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A B S T R A C T

Over the past 20 years, many long-span cable-stayed bridges with asymmetric spans have been constructed, and
the counterweight is always used to balance the self-weight of the main span. This paper presents an optimi-
zation method to determine the cable pre-tension forces in long-span cable-stayed bridges considering the
counterweight. This method includes: finite element (FE) model, formulation of the optimization problem and
optimization algorithm. FE model is established considering the geometrical nonlinearity. The optimization
problem is formulated with the objective of minimum weighted total bending energy. In addition, the constraints
for the cable pre-tension forces, the bending moment of the girder and the tower, the load of the counterweight,
the bearing reactions of the transition piers and auxiliary piers are all implemented in the optimization model.
The optimization algorithm solves the optimization problem through the variable-step search along each design
variable including the cable pre-tension forces, the load and the range of the counterweight. The efficiency and
the accuracy of the proposed method are demonstrated by an application example and the results exhibit the
importance of considering counterweight in the design of asymmetric cable-stayed bridges.

1. Introduction

Cable-stayed bridges are widely used for large span constructions
because of aesthetic and economic grounds. Since the first modern
cable-stayed bridge was built in 1955, the number of cable-stayed
bridges and their span-length have been increased rapidly [1–3]. Over
the past 20 years, cable-stayed bridges have opened up a new era with
spans over 1000m, such as the Ostrov Russkiy Bridge with a main span
of 1104m, the Hutong Yangtze Bridge with a main span of 1094m, the
Sutong Yangtze Bridge with a main span of 1088m and the Stonecutter
Bridge with a main span of 1018m [4].

Despite all its advantages, there have been several concerns over the
use of cable-stayed bridges. Cable-stayed bridges are usually statically
indeterminate structures, and their structural behavior is greatly in-
fluenced by cable pre-tension forces. Therefore, the determination of
cable pre-tension forces is critical in the design procedure. For long-
span cable-stayed bridges, advanced analysis techniques with greater
accuracy and precision are required to determine the optimum cable
pre-tension forces.

Early, model tests have been used for determining the cable pre-
tension forces [5,6]. With the development in computers and numerical
methods, many papers concerning the shape-finding of cable systems
have appeared [7–10].

Lazar et al. [11] were among the first to study the optimization of
cable force in cable-stayed bridges. The load-balance method was used
to determine the pre-tension cable forces of cable-stayed bridges.
Firstly, the influence matrix of the bending moments due to a unit force
applied successively along each stay cable of the bridge is determined.
Then, a system of equations is written to express that the bending
moments caused by pre-tension forces of stay cables shall be opposite in
sign to the bending moment due to the dead load and equal in absolute
value. By solving this system of equations, the pre-tension forces in
cables are determined.

Wang et al. [12] proposed the zero displacement method to de-
termine the cable pre-tension forces and the initial configuration of the
bridge. The configuration of zero deflections along the girder is taken as
the target and the cable forces are obtained by iterative calculation.
Zhang [13] improved the zero displacement method using a Kriging
surrogate model. The improved method is easier to converge and more
time-saving. Nevertheless, the moment distribution is not rational when
the vertical profile of the girder is significant.

Wang et al. [14] presented four methods to determine the cable pre-
tension forces, namely: minimizing the summation of squares for ver-
tical displacements along the girder (MSSVD), minimizing maximum
moment of the girder (MMM), continuous beam method (CBM) and
simple beam method (SBM). The MSSVD and MMM both use sequential
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unconstrained minimization techniques (SUMTs) to solve the problem.
However, it is not applicable to the situation where the design variables
exceed 10. The simple beam method (SBM) is recommended by the
author. The cable pre-tension forces are determined by considering the
girder of a cable-stayed bridge equivalent to the behavior of the con-
tinuous beam on elastic support. Nevertheless, it is difficult to control
bending moments at girder-tower junctions and because the cable
forces are determined based on the equilibrium of forces, the non-
linearities are not considered.

Chen et al. [15] presented the force equilibrium method. In this
method, the cable forces are considered as independent variables for
achieving the target bending moments along the girder. The approx-
imate influence coefficients are calculated and the cable pre-tension
forces are obtained iteratively. However, this method has the same
problems with the SBM.

Janjic et al. [16] presented the unit load method (ULM). The ULM
determines the adequate factors that should be multiplied to the ap-
plied unit loads to achieve a desired bending moment distribution. The
ULM can take time-dependent effects and geometrically nonlinear be-
havior into account. Asgari et al. [17] improved the ULM through the
application of an inverse problem based on the ULM. The improved
method costs shorter simulation time and results in less stresses in
bridge members.

Negrão et al. [18] and Simões et al. [19] proposed that cable pre-
tension forces could be determined by minimizing a convex scalar
function. Martins et al. [20–22] improved the method to include the
time-dependent effects, the construction sequence and the geometrical
nonlinearities. In recent years some modern methods (such as genetic
algorithm (GA) and support vector machines) have been applied to
solve the optimization problem [23–25].

For long-span cable-stayed bridges, the side span and the main span
are usually asymmetric. Therefore, the counterweight is used to balance
the self-weight of the main span [26]. So far, to the knowledge of the
authors, there are few comprehensive studies carried out to combine
the counterweight design with the optimization of cable pre-tension
forces. Most optimization methods of cable pre-tension forces concern
symmetric cable-stayed bridges and do not take the influence of the
counterweight into account.

In this paper, an optimization method to determine the cable pre-
tension forces considering the counterweight is proposed. The paper is
organized as follows. Section 2 describes the formulation of the opti-
mization problem. Section 3 introduces the algorithm to solve the op-
timization problem. Section 4 presents an application example to de-
monstrate the efficiency and accuracy of this method. Section 5
provides concluding remarks.

2. Optimization problem formulation

The determination of the cable pre-tension forces is posed as opti-
mization problem. This involves the definition of the design variables,
the design objectives and the design constraints.

2.1. Design variables

Normally for long-span cable-stayed bridges, the side-to-main span
ratio is relatively small. Hence massive counterweights are commonly
installed at the side span to keep the tower straight and to reduce the
bending moment in side span (see Fig. 1).

In this paper, the counterweight is assumed to be distributed uni-
formly in the area from the transition pier. The design variables are the
cable pre-tension forces, the load and the range of the counterweight.
The global design variable vector is

⋯ + +x x x x[x , , , ]n n n
T

1 2 1 2 (1)

where x i is the pre-tension force of the stay cable i, +xn 1 is the load of
the counterweight and +xn 2 is the range of the counterweight.

2.2. Objective function

The objective function determines the desired reasonable state of
the cable-stayed bridge. If the maximum deflection of the girder is
defined as the objective function, the desired state is “zero displace-
ment” configuration. If the moment distribution in critical sections is
defined as the objective function, the desired state is target bending
moment distribution along the girder and the tower. In this paper, the
weighted total bending energy of the girder and the tower is defined as
the objective function.
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where α is the weighted factor of the girder, n is the total number of the
girder element, La is the length of the girder element a, E Ia a is the
bending stiffness of the girder element a, Mai and Maj are the bending
moment at the ends of the girder element a, β is the weighted factor of
the tower, m is the total number of the tower element, Lb is the length of
the tower element b, E Ib b is the bending stiffness of the tower element b,
Mbi and Mbj are the bending moment at the ends of the tower element b.

It should be noted that the distribution of the bending moment can
be adjusted by changing the weight factor of the objective function. If
the bending moment in a specific area is expected to be reduced, the
weighted factor of the element in this area is supposed to be increased
[30,31].

2.3. Design constraints

Four design constraints are considered to avoid unreasonable state,
which are reflected by penalty function.

The cable pre-tension forces should be limited to a reasonable range
to makes the cross sectional area of each cable determined fall within a
feasible region.

⩽ ⩽ = ⋯T T T i n1imin max (3)

where Ti is the pre-tension force of the stay cable i, Tmin is the minimum
allowable cable pre-tension force, Tmax is the maximum allowable cable
pre-tension force and n is the total number of the stay cables.

The moment distribution along the girder and the tower should also
be limited to an acceptable range, which ensures that the tower is
mainly under axial compression and that the stress of the girder does
not exceed the allowable stress.
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where M| |b is the maximum absolute moment of the girder, M| |t is the
maximum absolute moment of the tower, Mb,max is the maximum al-
lowable moment for the girder and Mt,max is the maximum allowable
moment for the tower.

The load of the counterweight per unit length should be allowable.
Otherwise the girder may not have enough space to accommodate the
counterweight.

⩽ ⩽w w0 max (5)

where w is the load of the counterweight per unit length and wmax is the
maximum allowable load of the counterweight per unit length.

The bearing reactions of the transition piers and the auxiliary piers
should be reasonable to ensure that the bearing reactions are within the
region of bearing capacity for the commonly used bears.

⩽ ⩽ ⩽ = ⋯R R R j m0 1imin max (6)

where Ri is the bearing reaction of the transition pier or the auxiliary
pier j, Rmin is the minimum allowable bearing reaction, Rmax is the
maximum allowable bearing reaction and m is the total number of the
transition piers and the auxiliary piers.
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