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A B S T R A C T

Natural frequencies are attractive in structural damage detection as they can be conveniently measured and are
usually less contaminated by experimental noise. However, generally natural frequencies alone are not sufficient
for a unique solution when applied in finite element model (FEM) updating based damage detection. In view of
this, a damage detection method by using a parked vehicle induced frequencies variation is proposed in this
paper. Firstly the phenomenon of frequency variation caused by a parked vehicle is illustrated via a simulated
simply supported beam. Then a FEM updating based damage detection method is proposed by using measured
frequencies of the vehicle-bridge system with the vehicle parked at different locations. Numerical and experi-
mental examples with different damage scenarios are conducted to verify the feasibility of the proposed method.
The results indicated that it possesses the ability of taking advantage of the high accuracy and overcomes the
insufficient quantity of the natural frequencies for damage detection.

1. Introduction

Damage detection of existing bridge structures is an essential and
challenging task. Tremendous vibration-based damage detection tech-
niques have been developed during the past decades [1–4]. Such
methods are normally based on the fact that structural damage causes
changes in natural frequency, mode shape, and damping [5,6]. Com-
pared to mode shapes and damping, natural frequencies are more at-
tractive as they can be conveniently measured from just a few acces-
sible points on the structure and are usually less contaminated by
experimental noise [3,7–9]. Adams et al. presented a damage detection
method for one-dimensional components, including straight prismatic
bars, doubly-tapered bar, and automobile camshaft, based on the nat-
ural frequencies of longitudinal vibrations [10]. Nandwana and Maiti
proposed a two-stage crack detect method for stepped cantilever beam
[11]. The crack location was visualized by the point of intersection of
the three curves related to the natural frequencies, and then the crack
size was estimated via the standard relation between stiffness and crack
size. This method was further extended to identify cracks in segmented
beams by Chaudhari and Maiti [12] and variable cross-section beams
by Chinchalkar [13]. Messina et al. employed the statistical correlation
between the analytical and measured frequency changes to estimate the
location and size of damages [14]. A single crack in a vibrating rod and
two cracks of equal severity in a simply supported beam were identified
by using the knowledge of the damage-induced shifts in a pair of

natural frequencies by Morassi and his collaborator [15,16]. Lele and
Maiti developed a frequencies based crack detection method for short
beams in which the effects of shear deformation and rotational inertia
were considered [17]. Patil and Maiti established a linear relationship
explicitly between the changes in natural frequencies and the damage
parameters, and employed it to detect multiple open cracks in a slender
Euler-Bernoulli beam [18]. Kim and Stubbs formulated two models, i.e.,
crack location model and crack size model by relating fractional
changes in modal energy to natural frequencies changes, and applied it
to identify cracks in beam-type structures [19]. Zhong et al. adopted the
derivatives of natural frequency curve for damage detection of beam-
like structures based on auxiliary mass spatial probing [20]. Yang and
Wang constructed a damage feature database by natural frequency
vectors of an intact structure with different damages and then defined a
damage index named natural frequency vector assurance criterion ac-
cordingly to identify damages [21]. Wang et al. put forward the concept
of frequency shift path which combined the effects of frequency shifting
and amplitude changing into one space curve to detect local stiffness
reduction [9].

As a typical inverse problem, structural damage identification nor-
mally requires the number of available measurements to be great en-
ough. Otherwise it becomes an underdetermined problem in mathe-
matics [22]. However, the number of accessible natural frequencies
which are suited for damage detection is very limited. In other words,
natural frequency changes alone may not be sufficient for a unique
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solution of the structural damage [7]. Therefore mode shapes are fur-
ther employed to provide more information for vibration based damage
detection [23,24]. However, compared to natural frequency, mode
shape identification has obvious disadvantages in the aspects of the
complexity of signal processing technique and the sensitivity to noise.
The limited identification accuracy of mode shape would lead to un-
reliable damage detection results.

This paper aims to propose a new damage detection method for
bridge structures based on a parked vehicle induced frequencies var-
iation. This method possesses the ability of taking advantage of the high
accuracy and overcome the insufficient quantity of the natural fre-
quencies for damage detection. Bearing vehicle load is the essential
property of bridge. As the presence of a parked vehicle introduces ad-
ditional mass to the bridge, the natural frequencies of the bridge vi-
brating alone are different from that vibrating along with a parked
vehicle [25–28]. This phenomenon can be used to provide more fre-
quency information with a vehicle parked at different locations of the
bridge for damage detection. Firstly the phenomenon of frequency
variation caused by a parked vehicle is illustrated via a simulated
simply supported beam. Then a finite element model (FEM) updating
based damage detection method is proposed by using measured fre-
quencies with a vehicle parked at different locations. Numerical ex-
amples of a two-span continuous beam and a simply supported truss
with different damage scenarios, and experimental example of a simply
supported beam are analyzed to verify the feasibility of the proposed
method.

2. Basic theory

Bearing vehicle load is the essential property of bridge. The pre-
sence of a vehicle introduces additional mass to the bridge, thus the
natural frequencies of the bridge vibrating alone are different from that
vibrating along with a parked vehicle [25–28]. In this section, this
phenomenon is illustrated by a simulated simply supported bridge. FEM
is employed to calculate the natural frequencies. For a linear structural
system with n degree-of-freedoms (DOFs), the eigenvalue problem in
FEM can be written as

= = ⋯λ i nK Φ M Φ ( 1,2, )i i i (1)

where K and M are the global stiffness matrix and mass matrix of the
bridge, respectively; λi and Φi are the ith eigenvalue and the corre-
sponding eigenvector of the bridge, respectively.

When the bridge is bearing an additional vehicle, the vehicle and
the bridge will formulate a vehicle-bridge system. For simplicity, the
vehicle is assumed as a point mass in this section. The damping effects
for both the vehicle and bridge are neglected since only frequencies are
investigated in this study. Furthermore, the road surface roughness is
not taken into consideration for its non-contribution to the frequencies
when a vehicle is parked on the bridge. Thus the vehicle mass can be
added in the corresponding DOF in the global mass matrix M, then Eq.
(1) changes into
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where Mm is the global mass matrix of the mass-bridge system, λi
m and

Φi
m are the ith eigenvalue and eigenvector of the mass-bridge system,

respectively.
The ith natural frequency of the bridge ( fi), and natural frequency of

the vehicle-bridge system fi
m can be obtained as
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Fig. 1 shows the simply supported bridge with a parked mass. The
main parameters of the bridge and the mass are as follows: length

=L 1.6 m, elasticity modulus = ×E 2.1 10 Pa11 , constant mass density
=ρ 7800 kg/m3, constant cross section = ×A 0.2 0.01 m2, the addi-

tional mass =m 5 kg.
The nodes (NO. 1 to 25) are selected as parking points for the mass

gradually. The first three natural frequencies of the mass-bridge system
with the mass parked at different locations are calculated via FEM. The
bridge is divided into 25 finite beam elements equally. And the point
mass is added to the DOF in the bridge FEM according the parking
location. Modal analysis is performed 25 times to consider the 25 dif-
ferent conditions. Then they are normalized to the natural frequencies
of the bridge without the parked mass. The normalized natural fre-
quencies of the system with the parked mass at different locations are
shown in Fig. 2. It can be observed that the frequencies of the system
are different from that of the bridge alone, and the changes vary along
with the parking locations. Similar to the bridge alone, structural da-
mage will cause changes to the frequencies of the mass-bridge system.
Fig. 3 shows the changes of the first three natural frequencies caused by
a local damage on element 15 with the severity of 40%.
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Fig. 1. A simply supported bridge with a parking mass.
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Fig. 2. Natural frequencies of a bridge with a mass parking at different loca-
tions.
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Fig. 3. Natural frequencies changes of a bridge caused by local damage.
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