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A B S T R A C T

The present study focuses on employing an efficient control strategy to vibration mitigation for a spatial ten-
segrity beam composing of five typical quadruplex units. The active control approach is implemented in order to
maintain the structural integrity and stability under dynamic loadings. Linear-quadratic regulator (LQR) is
applied based on various actuator placement scenarios. Five scenarios are carried out for the control strategy, i.e.
struts, cables and combination by change actuator positions in different regions. Various actuator placement
schemes together with the system response are compared for all simulated scenarios by setting control para-
meters of LQR. The outcome of the proposed study highlights the significant reduction of dynamical response
compared to the uncontrolled performance, succeeding in the tensegrity system control, even at low cost with
only 5.26% (4 out of 76) elements controlled.

1. Introduction

Tensegrity structures are spatial, reticulated and lightweight struc-
tures that have been known for almost half a century [1,2], and seems
to be one of the most promising with positively controlled structures
because of its large motion amplitude together with its big strength-to-
mass ratio values [2–5]. These smart systems have a large number of
practical applications, for example, a small range of transportation,
tunable stiffness, active vibration damping and deployment or config-
uration control [3–5]. As one of the novel structural systems with a
wide space application [3], tensegrities have been received significant
attentions from quite a large number of researchers [4–7]. The tensile
cables and compressed struts with initial forces are the necessary con-
ditions for maintaining the stable configurations of tensegrities. Hence,
the structural stiffness that makes the whole tensegrity system flexible
depends on the material properties and the initial force conditions
[8–11]. Based on the aforementioned existing studies, it is concluded
that only small amount of energy is needed to control the shape of
tensegrity structures, which is advantageous for active control.

Until now, there are a large number of literatures related to dynamic
analysis of tensegrities. Motro et al. [12] performed dynamic experi-
mental and numerical work on a tensegrity structure composed of 3
cables and 9 struts. They showed that a linearized dynamic model
around an equilibrium configuration provides a good approximation of
the nonlinear behavior of simple tensegrity structure. Ben et al. [13,14]
proposed a numerical procedure for nonlinear dynamic analysis of

tensegrity systems. Oppenheim and Williams [15] concluded that fric-
tion in the rotational joints of the structure is a more important source
of damping than the damping in tendons. They also examined the dy-
namic behavior of a simple elastic tensegrity structure, and found that
the natural damping of the tensegrity elements is poorly mobilized due
to the existence of infinitesimal mechanisms [16]. Sultan et al. [17]
derived linearized dynamic models for two classes of tensegrity struc-
tures and proved that the modal dynamic range generally increases
with the pretension. Masic and Skelton [18] utilized a linearized dy-
namic model to enhance the dynamic control performance of a ten-
segrity structure. Tan and Pellegrino [19] investigated the nonlinear
vibration of a cable-stiffened pantographic deployable structure and
showed that the system resonant frequencies are related to the level of
active cable pretension. The form finding process should take the
symmetric geometry relationship of tensegrity and the equilibrium
conditions into consideration, as such, there were some researcher who
worked on dynamic analysis of different configurations but yields to the
same symmetric conditions. For example, Zingoni [20] applied a group-
theoretic method to symmetric of grid configurations; Chen and Feng
[21] extended the model analysis by adding prestressed loads to them.

Since tensegrity systems can be decorated with active controller,
they need to be actively controlled for the sake of structural service-
ability and safety. The concept of active control for structure systems
were introduced by Yao [22] at the beginning of 70s in 20th century
and afterward it was introduced to tensegrity system control by the mid
of 90s. A typical tensegrity experiment was implemented by Domer and
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Smith [23]. Chan et al. [24] and Fest et al. [25] presented an active
shape-control method to tensegrity structure experimentally. Djouadi
et al. [26] described the active vibration control of class 2 tensegrity
structure undergoing large deformations by optimal control scheme
coupled with a finite element method. Sultan et al. [8] presented a
formulation of active control and illustrated it with the example of an
aircraft motion simulator. Bel et al. [9] described the dynamic behavior
and vibration control of a full-scale active tensegrity structure. The
vibration control of a tensegrity beam under sinusoidal excitation is
investigated by Nelson [10]. Korkmaz et al. [27] have studied an active
control methodology for different cable node positions of a pedestrian
bridge with damage scenarios. The comparisons between discontinuous
cables controlled schemes to continuous cable controlled schemes have
shown some encouraging results for the real application. Veuve et al.
[28] presented a two-stage control method for the connection of two
halves of a footbridge by computation active cable changes and mea-
suring the response of deployment. Apart from these, some other work
also presented the applicability for active control strategy to tenseg-
rities [10,29,30].

However, with the context of structural dynamic control, a number
of shortages are reported for the unsatisfied performance control stra-
tegies in different implementations. In general, there are two aspects
that cause the ineffectiveness: due to the flexible characteristic, they
have many vibratory modes, which is a quite challenging task to control
their dynamic performance especially in real application because of
controller bandwidth limitation [31–33]. For instance, some modes are
beyond the range of controller bandwidth; as a typical nonlinear
system, tensegrities dynamic outputs influenced by the initial pre-
stressed condition for the cable and strut components, i.e., the force
density coefficient has great influence on the global stiffness of the
whole system [12,34–37]. For controlling the system operationally, the
process has to apply some system identification algorithms to extract
model information firstly, then to design the reasonable controllers.
Nevertheless, there are quite a few robust algorithms for nonlinear
system in terms of vibration mitigation. Thus, it is burdensome to take
effective identification results for the control requirements, and even
more challenge if system uncertainties have been taken into con-
sideration.

Although many studies obtained results mainly from numerical si-
mulation of small, simple, and symmetric tensegrity models, to the best
of the authors’ awareness, few work has been reported in the work on
the application to complex spatial tensegrity systems. Inspired by these
ideas, in this paper, the linear quadratic regulator (LQR) in conjunction
with different actuator placement schemes are employed to implement
the active control of the spatial tensegrity systems under dynamic ex-
citation. In order to create structures which can adapt to maintain
stability [29] and vibration control method level [38–40], the actuators
in general are employed to the elements of tensegrities [41,42]. The
importance of this study is the effort in realization a relatively simple
control strategy applying to relatively complex spatial tensegrity sys-
tems, meanwhile, optimal active control is considered by optimizing
the structure and controller simultaneously; on the other side, different
control scenarios have been compared on their control effects to guide
engineering applications.

The rest of content is organized as follows: Section 2 contains the
basic assumptions of the geometrical connection conditions for struts
and cables of tensegrity system. The other content in the aforemen-
tioned section is the problem formulation of spatial tensegrity system,
which consist of mass matrix, contribution different parts of the stiff-
ness matrix. Afterward, the optimal active control methodology is ac-
cordingly outlined in Section 3, followed by a double layer quadruplex
tensegrity beam as a numerical application. Lastly, in the closing sec-
tion, the simulation results are summarized and critical comments are
made for further research work planned to be incorporated.

2. Dynamic model of spatial tensegrity system

2.1. Basic assumptions

Although tensegrity systems show highly nonlinear dynamic per-
formance [42–46], for the simplification reason, the linear control
method around an elastic equilibrium offers a well approximation [31].
Before establishing dynamic model of the spatial tensegrity system, the
following assumptions are employed [2,37]:

• Cables and struts are connected by pin joins;

• Strut members carry axial tensile or compressive forces;

• Cable members only carry axial tensile forces;

• The external loads only act on the nodes of whole system;

• The local and global bucking of struts are neglected;

For whole cables and struts, the dynamic incremental stiffness
caused by external loads is much smaller compared to their linear and
geometrical stiffness such that incremental stiffness can be ignored.

2.2. Problem formulation

In this section, a linearized dynamic model around an equilibrium
configuration is used to describe the dynamic behavior of the active
tensegrity system under harmonic excitation. The linearized differential
equation at a prestressed configuration can be written as:
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Here, M̂b, ̂Cb and ̂Kb refer to the mass, damping and stiffness matrix,
respectively, ̂ ̂=t F tF( ) [ ( )]i represents the excitation inputs matrix,
vector ̂ tx ( ), ̂ tẋ ( ) and ̂ tẍ ( ) represents the vector of nodal displacement,
velocity and acceleration respectively, A0 refers to the dynamic loading
amplitude coefficient matrix, ϖ is the frequency of dynamic loading
and ϑ is the phase angle. For the development of a finite element model
of the tensegrity system, each element in the structure is characterized
as [42]:
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mass contributes by elementij.
On the other hand, Rayleigh damping model is considered in this

paper to compute the damping matrix ̂Cb. Rayleigh defined proportional
damping as a dissipative situation where viscous damping is directly
proportional to mass, stiffness or both as Eq. (3): here αc and βc re-
present mass and stiffness material loss factors respectively, which can
be determined by solving the nature frequencies and damping ratios of
the first and second modes of the structure system.

̂ ̂ ̂= +α βC M Kb c b c b (3)

A space rod element for initial and current configuration is illustrated in
Fig. 1. The element nodal coordinates at initial time and time t in the
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The local displacement along the element is as follows

= −l l lΔ t 0 (5)

where lt and l0 are the length of the member at time t and initial time,
respectively, given as:
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