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A B S T R A C T

This study concerns the structural systems in which additional damping was introduced by means of viscoelastic
(VE) dampers modeled with the fractional derivative models. The fractional derivative models have an ability to
correctly describe the behavior of VE materials in a wide range of frequency, using a small number of model
parameters. However, the governing equation of motion includes fractional derivatives together with ordinary
ones. In the proposed approach, after applying the Laplace transform and the inverse transform to the equations
of motion, the solution obtained for the system with fractional dampers is equivalent to the modal solution used
in the case of proportional damping. In order to validate the proposed approach, the maximum response of the
structural system equipped with dampers is determined in the time domain. Thus, the equations of motion with
fractional derivatives derived for the considered system are numerically integrated. Moreover, the paper extends
the response spectrum concept to structures equipped with fractional viscoelastic dampers.

1. Introduction

The time integration method and the response spectrum method are
often used in the dynamic analysis of structures subjected to earthquake
forces. The time integration method is used in the time domain while
the spectrum method is used in performing the analysis in the fre-
quency domain. Real structures are systems with many degrees of
freedom and, in this case, the analysis in the time domain could be very
time consuming. Therefore, the spectrum method is recommended in
design codes in many countries. In the spectrum method, the system
with many degrees of freedom is transformed to a set of systems with
one degree of freedom in the modal subspace. The maximum response
of structure to seismic forces can be obtained by the superposition of
maximal responses of the above-mentioned set of one degree of
freedom oscillators. For classically damped linear systems with pro-
portional damping matrices, the linear modes of vibration are used for
uncoupling the equation of motion [1,2]. However, for a non-classically
damped system, such as structures with viscous or viscoelastic dampers,
the classical response spectrum method cannot be used because of the
non-proportionality of the damping matrix. In order to uncouple the
equation of motion of structures with non-proportional damping, ma-
trix properties of the complex eigenvalue problems must be used [3]. In
the end, a set of first-order uncoupled differential equations with
complex coefficients are obtained. In this context, various research
papers were published by Velesos and Ventura [4], Yang et al. [5],

Maldonado and Singh [6], Falsone and Muscolino [7,8], Zhu et al. [9]
and Liu et al. [10], among other ones. In the paper [11], the spectrum
method was used for the dynamic analysis of structures with viscoe-
lastic dampers modeled with the help of the generalized Kelvin and
Maxwell rheological models while in [12], the spectrum method was
applied in the analysis of structures with active control systems.

Structures subjected to dynamic loads caused by earthquakes or
wind pressure could be equipped with different types of damping sys-
tems in order to reduce excessive vibrations. Depending on whether the
energy is provided to the damping systems, they are divided into active,
passive and semi-active systems. Different kinds of passive systems are
often used to reduce excessive vibrations because these types of systems
are effective, simple to manufacture and no external source of energy is
required for their operation [13,14]. The viscoelastic (VE) dampers are
often used with success as passive control systems [11,15–19], among
other ones. The viscoelastic dampers are built of polymeric materials
which are able to dissipate vibration energy [20]. These dampers
mounted in structures added damping as well stiffness. Moreover, the
properties of viscoelastic materials depend on the frequency of excita-
tion, environmental temperature and amplitudes of vibration when
such amplitudes are large [20]. The dynamic behavior of VE dampers
could be described by rheological models which could be either clas-
sical or so-called fractional derivative ones. The classical rheological
models are used in [11,18,21,22] while the fractional derivative models
are adopted in [15–19,23]. In contrast to the classic rheological models,
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which require a large number of parameters to correctly describe the
behavior of dampers [18,21], the fractional derivative models have an
ability to correctly describe the behavior of VE materials in a wide
range of frequency using a small number of model parameters [18]. The
complex modulus model [20] is also often used but the dynamic ana-
lysis must be done in the frequency domain.

Only Chang and Singh in [15] and Singh and Chang in [11] gave
systematic analyses of the fractional derivative Kelvin model of VE
dampers in the context of seismically excited vibration of structures.
The fractional derivative model is restricted to the case when the order
of fractional derivative α can be written as a quotient of two integer
numbers. The response spectrum concept was not presented in detail
but some response spectra of building floors are shown. Moreover, a
very large linear eigenvalue problem must be solved before the deri-
vation of the set of uncoupled modal equations. In papers [11,15–17],
the seismic, in time domain analyses of structures with fractional
dampers are also presented.

The aim of this paper is to determine the dynamic response of a
building structural system equipped with viscoelastic dampers and
subjected to seismic loads. The dynamic behavior of dampers is de-
scribed by a set of rheological models with both classic and fractional
order derivative. The dynamic analysis of the considered system is
carried out in the frequency domain. The paper extends the response
spectrum concept to structures equipped with fractional viscoelastic
dampers. The cross-correlation coefficients are determined for the
complex-valued mode shapes obtained in the case of non-classically
damped systems. These coefficients enable determination of the peak
values of displacements and internal forces for structures, subjected to

the ground acceleration. The remaining part of the paper is organized as
follows. In Section 2, the adopted rheological models of VE dampers
together with the equation of motion of structures with VE dampers are
presented. The solution in the frequency domain of the motion equation
for structures with dampers is described in Section 3, while in Section 4
the solution in the time domain is given. Extension of the spectrum
response concept for the structures with dampers modeled with the
help of fractional derivatives is proposed in Section 5. The results of
typical calculations are presented and discussed in Section 6. The paper
ends with concluding remarks and Appendix A.

2. Non-classically damped structures

2.1. Rheological damper model

The dynamic behaviors of the VE dampers are typically described
using rheological models (e.g. Kelvin model, Maxwell model). The
rheological damper model usually includes a number of suitably com-
bined springs and dashpots [14,21]. In general, the behaviors of con-
ventional viscoelastic materials depend on frequency, temperature and
deformation amplitude. However, in order to adequately describe the
properties of the material, a large number of coefficients must be used.
The model has the disadvantage of a significant difficulty in identifying
all of the coefficients for a real material.

The rheological properties of VE dampers could also be described
using the fractional calculus (see [15,24]), i.e., fractional derivatives in
the description of a mechanical model. Fractional differentiation is the
operator that generalizes the order of differentiation to fractional

Nomenclature

a t( )gr ground acceleration
ci damping parameter of damper model
ki stiffness parameter of damper model
q t( )i degree of freedom of damper or structure
s Laplace variable
si complex and conjugate eigenvalue
u t( )0 force in Kelvin model of damper
u t( )1 force in Maxwell model of damper
E [•] expected value of random variable
Di, Ei peak values taken from spectra
Dt

α derivative of order α with respect to time t
−L 1 inverse Laplace transform

ai eigenvector with complex components
er vector of damper location

tf( ) vector of interaction forces between structure and dam-
pers

i location vector of inertia forces in structure
tp( ) vector of excitation forces
tq( ) vector of structure displacements

xj real part of eigenvector
zj imaginary part of eigenvector

Cd damping matrix of dampers
Cs damping matrix of structure

sD( ) dynamic stiffness matrix
Gd matrix combining stiffness and damping properties of

dampers
sH( ) frequency response matrix

Kd stiffness matrix of dampers
Ks stiffness matrix of structure
Lr location matrix of damper
Ms mass matrix of structure
Rj matrix of residues
α order of fractional derivative
γi non-dimensional damping ratio
ηi imaginary part of eigenvalue
λ frequency of harmonic vibration
μi real part of eigenvalue
ν1 relation between stiffness and damping parameters in

Maxwell model
ρi jk, cross-correlation coefficient
ωi natural frequency of vibrations
ωjD damped angular frequency

Fig. 1. Complex model of damper: (a) classical and (b) fractional.
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