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A B S T R A C T

Prestressed concrete with internal unbonded tendons has been recognized as an excellent structural option for
beams and slabs and is employed worlwide. Numerical solutions for the analysis of such structures are still an
active field of research. This work presents a finite element model for the physical and geometrical nonlinear
analysis of prestressed concrete beams with unbonded internal tendons, under short-term loading. The re-
inforced concrete beam is modeled by Euler-Bernoulli nonlinear plane frame elements and a total Lagrangian
approach. The prestressing tendon is modeled by a single polygonal element embedded in a specified subset of
the frame elements. Due to lack of strain compatibility between the concrete and the tendon at a given cross-
section, the cable strain is computed from the displacements of all associated frame elements. Geometric and
material nonlinearities are considered for both the reinforced concrete beam and the prestressing tendons. The
internal force vector and corresponding tangent stiffness matrix of each element under large displacements are
derived consistently, and novel expressions for the tangent stiffness operator which ensure the convergence rates
of the Newton-Raphson scheme are developed. The accuracy of the formulation is assessed by comparison with
experimental tests, with very good results.

1. Introduction and literature overview

Prestressed concrete structures are mainly divided into two groups,
according to the application of the prestressing forces to the concrete
element. Pretensioning considers that the steel is tensioned before the
concrete is cast, therefore requiring bond between the elements for the
proper force transfer. Post-tensioning, on the other hand, implies that
the tendon or cable applies stresses upon the concrete element already
during the prestressing operation. In this case the bond between pre-
stressing steel and concrete depends on the constructive solution
adopted.

Unbonded prestressed concrete structures are a very efficient load-
carrying system, especially with the use of greased low-cost tendons
protected by plastic sheathing. These elements have been used ex-
tensively in North America for over 50 years [1] and have become
popular in the construction of medium rise buildings in Brazil in the last
decades.

The numerical simulation of these structures is a challenging task, as
one must necessarily cope with the first stages of application of ten-
sioning, the immediate loss of prestress, the behavior under external
loads and, in case of a long-term analysis, the loss of prestress due to
phenomena such as shrinkage, creep and tendon relaxation.

Numerical analysis of unbonded prestressed concrete beams tends

to be more complex than that of the bonded case, since in the former
there is no strain compatibility between the concrete and the tendon at
a given cross-section. Thus, the cable strain depends on the displace-
ments of the tendon as a whole.

The crucial issue, therefore, is the consideration of the slipping
tendon. The most employed strategy has its roots on the load balancing
concept, which was originally introduced by Lin and Burns [2] and
afterwards extended by Aalami [3,4]. According to this approach, the
tendon acts as an external force applied to the concrete beam.

The FE simulation of mechanical behavior of prestressed concrete
beams with unbonded tendons is still the subject of various research
works. In the following some of the most recent ones, more closely
related to the present work, are briefly described.

Barbieri et al. [5] developed an hybrid FE model for bonded and
unbonded prestressed concrete frames, where the active and passive
reinforcements are modeled as layers within the cross section. The
bonded tendon contributes to the overall stiffness, but the unbonded
tendon is considered as an equivalent force which does not contribute
to the stiffness coefficients.

D’Allasta and Zona [6] developed a FE model for externally pre-
stressed composite beams with deformable connection. Later the same
research group presented a formulation for nonlinear analysis of beams
prestressed with external slipping tendons [7], as well as analytical and
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simplified procedures for prestressed beams [8–10] Their FE model
takes into account the influence of the tendon change of position in the
tangent stiffness matrix in the context of a high order displacement-
based FE formulation.

Lou and Xiang [11,12] developed a numerical procedure to in-
vestigate second-order effects on externally prestressed concrete beams.
Later, Lou et al. [13,14] included the effect of long-term behavior on
the nonlinear analysis of prestressed concrete girders within a similar
nonlinear FE formulation. The same authors have also applied their
numerical formulation for beams prestressed with FRP tendons [15,16],
for prestressed concrete columns [17] and externally prestressed steel-
concrete composite beams [18].

Vu and coworkers [19] developed a nonlinear FE model for the
structural response of post-tensioned beams, based on a so-called macro
finite element which is characterized by its homogeneous average in-
ertia. Kim and Lee [20] developed a flexural analytical model focused
on the behaviour of continuous unbonded post-tensioned members.

The present work focuses on the analysis of prestressed concrete
beams with unbonded internal tendons, under short-term loading. The
reinforced concrete beam is modeled by nonlinear plane frame ele-
ments based on the Euler-Bernoulli-Navier beam theory and the total
Lagrangian approach. Each unbonded tendon is modeled by a single
polygonal element embedded in the correspondent the frame element.
Geometric and material nonlinearities are considered for both the re-
inforced concrete beam and the prestressing tendons. The internal force
vector and tangent stiffness matrix of each element under large dis-
placements are derived in a variationally consistent way, providing
optimal rates of convergence to the nonlinear analysis procedure
Special attention is given to the development of consistent and robust
numerical approaches for the two stages of short-term loaded pre-
stressed concrete beams: tendon stressing and further load application.
The accuracy of the formulation is assessed by comparison with ex-
perimental results.

2. Frame element

The proposed model employs an Euler-Bernoulli displacement-
based frame element for the simulation of the reinforced concrete
member. The hypotheses of plane sections, with large displacements
and moderate rotations, widely used on analysis of reinforced concrete
frames, are considered in the context of a Total Lagrangian description.
The displacement field can be written as:

= − ′ =u X Y u X Y v X v X Y v X( , ) ( ) ( ) ( , ) ( )0 0 0 (1)

where u and v are the axial and transverse displacements and the
subscript 0 refers to displacements at the beam reference axis. The
element geometry and coordinate system are shown in Fig. 1. The
analytical model considers the membrane ε0 and curvature κ terms,
with the geometric nonlinearity taken into account in the membrane
strain as follows:
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The membrane strain and the curvature can be interpreted as gen-
eralized strains and written in vector form as:
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where the first and second vector represents the linear (εL) and non-
linear (εNL) generalized strains.

The axial stresses (σ) can be computed from the axial strains (ε)
using the constitutive models discussed in Section 4, while the normal
force (N) and bending moment (M), henceforth called generalized
stresses, are computed from the integration of stresses in the cross-
section:
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The element degrees of freedom (DOFs) are depicted in Fig. 1. The
usual beam minimum continuity requirements imply the use of a C0

linear and C1 cubic hermitian interpolation functions for the axial and
transverse displacements, respectively. Let L x( )i be the two axial linear
interpolants and H x( )i be the four transverse interpolant functions. The
introduction of these functions allows the representation of the gen-
eralized strains from the nodal displacements via the strain-displace-
ment matrices
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where BL and BNL are respectively the linear and nonlinear strain-dis-
placement matrices and ue is the nodal displacement vector of the
element. Matrix BL contains derivatives of the interpolation functions Li
and Hi and is the same for linear beam elements, as may be seen in any
textbook on linear finite elements. For this reason the focus will be on
the nonlinear strain-displacement term. The source for nonlinearity is
the term ′v0

2.
From the displacement interpolation, the term ′v0, equal to the cross-

section rotation (θ) can be written as:
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Thus, the nonlinear part of the membrane strain is given by:
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This expression contains polynomials terms n x up to quartic, while
εL is constant along the element. The unbalanced higher order terms can
lead to membrane locking due to inability to represent membrane
strains associated with inextensional bending [21]. In order to avoid
membrane locking, a higher-order interpolation for the axial displace-
ments was adopted in [7], increasing the number of degrees of freedom
and the element complexity. A simpler approach is adopted here,
whereby the average strain [21] is used instead of the original ex-
pression: Thus:
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where
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Matrix A is symmetric, constant and can be evaluated analytically,
producing a nonlinear strain vector
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where the implemented form of BNL is shown. Incrementally, with a
view to virtual work application, it can be shown that the following
holds:

= + =εδ δ δB B u B u( )L NL e e (11)

The element internal force vector (ge) can be obtained from theFig. 1. Frame element geometry and degrees of freedom.
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