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This paper proposes a time-integration analysis scheme for the vehicle-bridge-interaction problem. Key feature is
the introduction of artificial auxiliary contact points between the wheels and the bridge deck elements in
contact. The artificial points allow the formulation of two sets of kinematic constraints and two sets of contact
forces (i.e. localized Lagrange multipliers), between the vehicle and the bridge, that enable the partitioned, non-
iterative, dynamic analysis of the two subsystems. To demonstrate the accuracy of the proposed approach, the
paper first examines a simple example of a single sprung-mass model traversing a simply supported bridge. Then,
it considers a more realistic problem of eight train vehicles crossing an arch bridge. The train vehicles are
simulated as multibody assemblies and the bridge with a three-dimensional finite element model. The results

prove the computational efficiency of the proposed scheme compared to existing algorithms.

1. Introduction

The role of bridges in contemporary High-Speed Railways (HSRs) is
vital. Bridges may constitute even more than 80% of the total length of
a HSR line [1]. At operational speeds as high as 300 km/h (or even
higher) [1], the dynamic vehicle-bridge-interaction (VBI) becomes
critical to the operation safety and the travel comfort of HSRs [2]. From
a numerical simulation standpoint, an accurate and computationally
efficient analysis of the VBI is essential, especially when the dimensions
of the system are large, or a large amount of response-history analyses
are necessary.

Most time-integration algorithms developed for the VBI problem,
either tackle the coupled vehicle-bridge system (coupled algorithms)
[2-10], or solve the partitioned vehicle and bridge subsystems sepa-
rately through iterations (iterative algorithms) [11-21]. A common
characteristic of the coupled algorithms is that they lead to time-de-
pended system (e.g. stiffness and damping) matrices [2-6]. The time
dependency arises from the moving (wheel-rail) contact forces that act
as (internal) loads within the global (coupled) vehicle-bridge system.
Consequently, the global system matrices must be updated and factor-
ized at each time step, leading to considerable computational effort
[20]. In addition, since coupled algorithms solve the equations of mo-
tion (EOMs) of the vehicle and the bridge subsystems together, the size
of the system matrices is larger than otherwise.

Iterative algorithms avoid the time-dependency of the system
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matrices. Instead, at each time step they rely on an iterative procedure
which terminates when a convergence criterion is satisfied, e.g. a
compatibility condition is within a specified tolerance. Xia et al. [11]
proposed such a scheme that treats the contact forces as external loads
to the vehicle and the bridge subsystems respectively, and solves the
two subsystems separately. Liu et al. [12] referred to this algorithm as
loosely coupled iterative algorithm and applied it to analyse a composite
bridge under HSR trains. More recently, Zhang and Xia [13] proposed a
refined iterative algorithm, in which the first trial of the vehicle re-
sponse is predicted by setting the bridge motion to zero.

Neves et al. [20] proposed a different method that also avoids the
use of time dependent system matrices. Instead, it solves directly a
system of linear equations, comprised of the EOMs of the vehicle and
the bridge, and the compatibility condition between the two sub-
systems. The solution returns simultaneously the displacements and the
contact forces of the system. That algorithm [20] uses block factoriza-
tion to exploit specific properties of the differentiation operator matrix,
i.e. symmetry, positive definiteness and bandwidth [20].

An alternative approach that potentially incorporates the ad-
vantages of both coupled [4-6] and iterative schemes [11,12] is the lo-
calized version of the Lagrange multipliers method (Park et al. [22,23]).
This approach originates from the field of computational mechanics and
it focuses on coupled systems, e.g. the compressible internal fluid-
structure interaction problem [23]. Its novelty is that it introduces an
additional artificial auxiliary point at the contact interface, with the aid
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of which, it assigns two sets of Lagrange multipliers (in contrast to the
conventional Lagrange multiplier method) and states two sets of kine-
matic constraints between the auxiliary point and the other contact
points. This prevents singularities associated with multi-point con-
straints and allows an efficient partitioned treatment of the coupled
system [22].

Following [22,23], the present study proposes a localized Lagrange
multipliers method for the VBI problem. The scheme is both accurate
and computationally efficient as it treats the vehicle and the bridge
subsystems in a partitioned manner but avoids iterations. It consists of
three independent analysis modules: (1) the interaction solver that cal-
culates the contact force; (2) the vehicle solver, and (3) the bridge solver
that integrate separately the vehicle and the bridge subsystems, re-
spectively. By means of demonstration, the present study first considers
a moving sprung mass model running over a simple bridge, and later a
more realistic system consisting of an arch bridge traversed by a series
of moving (train) vehicles.

2. Modelling of vehicle subsystem

A typical HSR train consists of a series of vehicles representing the
locomotives and the passenger coaches (Fig. 1(a)). Similarly to many
recent studies [4-6,19], this paper models each train vehicle as a three-
dimensional (3D) multibody assembly. Each vehicle consists of seven
rigid body components: one car body, two bogies and four wheelsets.
Linear springs and dashpots representing the suspension systems con-
nect the distinct components. This analysis assumes that before the
vehicle enters the bridge it travels on a rigid embankment, and that
both structures display the same rail irregularities. Thus, the train en-
ters the bridge with non-zero initial deformation and maintains a
constant speed. The simulation omits the longitudinal degrees of
freedom (DOFs) and considers each vehicle as (dynamically)
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independent of the other vehicles. The car body and the bogies have
five DOFs each, with displacement vector:

ut = [y v gt gt 0] €h)

where the superscript ()* denotes the car body when u = ¢, while
u = t1, t2 stands for the front and the rear bogies, respectively (Fig. 1).
The DOFs y and z are the lateral and vertical (translational) displace-
ments, and ¢, ¢ and 6 are the yawing, rolling and pitching (rotational)
Euler angles. Excluding the pitching rotation of the wheelset (Fig. 1(b)),
the motion of each wheelset (u = w) is described with four DOFs [6]:

uwi= [ywi Zwi pri ¢wi] (2)

where i = 1-4 denotes the number of the wheelset. Thus, the total DOF
of each vehicle model is DOF” = 31:

w=[u u! u? o u? ud o]l 3)

The superscript () denotes the vehicle subsystem and ()' indicates
the transpose of a matrix throughout the paper. The matrix expression
of the EOM for the vehicle subsystem can be written as:

Kpu —-WYA = B 4)
where KY; is the effective stiffness of the vehicle:

Kyp=mL Lol g

off dr? dt 5)
MY, K" and CV are the mass, stiffness and damping matrices of the
vehicle, the details of which can be found in [19]. W’ is the displace-
ment vector of the vehicle and % denotes time differentiation (of e.g.

the displacement vector). FV is the force vector of the vehicle, which
consists of the gravity loads. The direction matrix W” and the contact
force vector A" are:
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Fig. 1. 3D railway vehicle model: (a) a typical HSR train; (b) side view, (c) top view and (d) back view of the vehicle.
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