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A B S T R A C T

A robust elasto-plastic element is developed for analysis of frame structures. The element consists of a beam
member with end joints with properties permitting representation of the effect of section forces in adjoining
members, like axial forces. By use of the equilibrium formulation the deformations of beam member, plastic
hinges and joints become additive and can be expressed in explicit form. The plastic deformations of the beam
and the joints are represented by separate plastic mechanisms, described by the same generic cyclic plasticity
format. This format is defined by an energy function, a yield surface, and a plastic flow potential for each plastic
mechanism. In the cyclic plasticity model each component is characterized by the elastic stiffness, the yield
capacity, the additional flexibility at initial yield, the ultimate capacity and a shape parameter describing the
curvature of the hysteresis curve. The yield surface is represented by a recently developed generic format,
combining the section forces into a homogeneous function of degree one and permitting smooth transition
between regions with large and more moderate curvature. A robust return algorithm of approximately second
order is developed, using a mid-step state to obtain representative information about the return path. The ele-
ment is implemented in a co-rotational large-deformation computer program for frame structures. The for-
mulation is illustrated by application to a couple of typical offshore frame structures, and comparison of different
representations of the plastic effects illustrates the importance of a robust element with realistic representation
of the cyclic plastic mechanisms.

1. Introduction

In the design and analysis of frame structures, e.g. offshore tubular
structures and steel frame buildings exposed to earthquakes, a large
number of load cases are analysed to ensure the structure can withstand
the external loading. Some important load cases involve substantial
deformation of members in the elasto-plastic regime, followed by sub-
sequent unloading introducing a need for an accurate representation of
the cyclic plastic behaviour of beam members. The cyclic elasto-plastic
response of a single beam member has been experimentally investigated
in e.g. [1–5] for both uni-axial tension/compression and uni-axial
bending, and elasto-plastic cyclic column-buckling of tubular steel
columns was investigated and characterised by [6]. While cyclic plastic
bending is dominated by the non-linearity in the material behaviour,
cyclic column-buckling is characterised by the non-linearity in the
material behaviour and in the geometry. Common to both cases is that
the plastic deformation is local in the form of plastic hinges, suggesting
that it is possible to separate geometric and material non-linearity by
proper modelling. The localized plastic deformation in the form of
plastic hinges is also observed in full structures [7–9], where cyclic

loading of the local members comes naturally via global unloading or
load-shedding caused by buckling or plasticity in other members. In full
structures the plastic hinges may be caused by a plastic mechanism in
the local member itself or by a plastic mechanism at the local joint
connecting the structural member to the rest of the structure. It is ne-
cessary to distinguish the two types of mechanisms from each other and
to acknowledge that they may both be present at the same time at the
same location. Experimental investigation of capacities of local joints in
tubular structures has been carried out in [10] and extensively char-
acterized in [11].

In addition to plastic mechanisms, in practice the local joints be-
tween members introduce additional flexibility in the structure com-
pared to completely rigid connections. The difference in the response of
a structure modelled with and without local joint flexibility is clear in
both traditional analysis of frames [12] and in bifurcation and stability
analysis of frames [13]. Multiple experimental programs have in-
vestigated and characterized local joint flexibility [14–16], essentially
describing the additional flexibility of the local joint by parametric
equations depending on the local joint geometry. Recently detailed fi-
nite element models have been used to develop such parametric
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equations after validation with experimental data [17–19]. The inclu-
sion of local joint flexibility in analyses has primarily been modelled by
separate elastic joint elements [20–22], introducing a need for a
transformation between flexibility and stiffness and most often in-
troducing infinite stiffness terms for displacement directions with zero
joint flexibility. Separate joint elements including both elastic and
plastic flexibility have been introduced [23], introducing this infinite
stiffness problem. In some finite element codes e.g. RONJA developed
by Rambøll, the local joint flexibility has been introduced in the
member elements by static condensation, a method that does not re-
solve the problem with infinite stiffness.

In most frame structures the imperfections of the individual mem-
bers need to be modelled to account for the effect of the normal force.
Imperfection effects were introduced by [24,25] in an element with
negligible shear flexibility based on parabolic and a sine imperfection
shape respectively. An explicit elastic element including shear flex-
ibility and a parabolic imperfection shape was introduced in [26] and
was extended to include plastic mechanisms in the form of concentrated
plastic hinges at the ends of the elastic beam giving an explicit elasto-
plastic beam element with initial imperfections.

The differences between beam elements with concentrated plastic
hinges and beams modelled with spread of plasticity using fibre ele-
ments was investigated in [27], finding the relative magnitude of the
generalized plastic strain components to be similar for the two types of
models. Several element formulations with concentrated plastic hinges
have been proposed, some having three possible plastic hinges [28–30]
with one hinge located at mid-span to account for column buckling
effects. The degrees of freedom associated with the mid-point plastic
hinge are typically removed by static condensation. Other elements,
primarily used for column problems, have been suggested [31] with
only a hinge at mid-span, and a proposal for softening hinges with lo-
cation dependent on the section force distribution in [32]. The differ-
ence between displacement, flexibility and mixed formulations of
beams was investigated in [33] finding the flexibility format quite ac-
curate taking into account its low-order modelling compared to higher-
order modelling typically used in displacement and mixed formula-
tions. Flexibility formulations via a ×6 6 equilibrium format was pro-
posed in [34,35] for monotonic and cyclic plasticity models as well as in
[26] including local imperfections. In order to model cyclic plasticity in
frame structures more accurately [36] introduced a generalized for-
mulation of the cyclic plasticity model from [37]. The model is based on
non-linear kinematic hardening rules and evolution of the model
parameters and was subsequently extended to include local joint plastic
mechanisms [38]. Common to all of the element formulations is that
they are based on a set of yield functions bounding the elastic domain
and a set of plastic flow potentials to describe the development of
plastic deformation.

The yield surface of the individual plastic mechanisms may be de-
termined either by approximate analytical methods [39] or numerical
estimates [40] and subsequently modelled in various ways. A standard
approach that ensures convexity of the yield surface is the use of multi-
linear yield surfaces. However, the checks of multiple surfaces and
determination of gradients at vertices may be difficult, see e.g [41]. To
overcome the difficulty with multiple checks, single-equation for-
mulations of yield surfaces have been proposed, e.g. higher-order
polynomial approximations [42,43], NURBS-based formulations [44]
or use of Fourier principles [45]. All these have the disadvantage that
the coefficients in the equations or locations of the control points may
be difficult to determine while simultaneously ensuring convexity of the
yield surface. The convexity was ensured in a surface format proposed
by [46,47] using a Minkowski sum of ellipsoids, and the use of the
convexity of the ellipsoids was utilized by [36] to form a generic convex
single-equation yield function without the need to form the actual
Minkowski sum. For some cyclic plastic deformation histories the shape
of the yield surface has been found to change, and a weighted average
of different yield surfaces has been applied with success [48,49].

Independent of the choice of the yield surface formulation it is de-
sirable to be able to make large load/deformation increments in order
to have efficient computations. The analysis procedure typically de-
termines the displacement increments via a global analysis and subse-
quently determining the element deformations and forces, ensuring that
the yield condition is not violated in the individual elements.
Satisfaction of the yield condition is typically attained by a return al-
gorithm where combinations of the deformation evolution equations
and the yield conditions determine the correct increment in element
forces. For continuum elements [50] proposed a return algorithm for
plane stress elasto-plasticity including the algorithmic tangent stiffness
needed to ensure second order convergence of the global solution.
While the plane-stress elasto-plasticity return algorithm was developed
for a fairly simple yield surface, a more advanced algorithm was de-
veloped for structural concrete with a more complicated yield surface
[51] making use of sub-stepping techniques as well as line search to
ensure a proper return to the yield surface. In geotechnics the yield
surface is typically divided into multiple domains and several return
algorithms have been developed to overcome the problems with finding
the correct domain to return to [52–54]. Where [52] modified the in-
dividual domains, [53] used bisection in a transformed space and a
combination of returning to an unhardened state and subsequently re-
turning to the hardened state, and [54] made use of a relaxation
technique to obtain a more robust algorithm. The efficiency of the re-
turn algorithm may in some cases be increased by transforming to an
invariant space [55] combined with multi-linear yield surfaces and
defining separate rules for return to vertices [56]. Separate algorithms
have also been developed for coupled problems including damage [57].
Common to all return algorithms is that they need to be quite robust to
allow for large increments of deformation in any direction, and for
plastic hinges it is paramount to ensure the robustness of the algorithm
independently of the given yield surface.

This paper develops an elasto-plastic frame element, and introduces
plastic beam hinges and elasto-plastic joints via the concept of additive
flexibilities. The element is defined in an equilibrium-based co-rota-
tional formulation and is sufficiently general to encompass elastic ele-
ment formulations ranging from standard cubic shape functions to
normal force dependent stiffness functions including initial member
imperfections, see e.g. [26,58], as well as plastic mechanisms ranging
from ideal plasticity to models coupling elasto-plasticity and damage.
The cyclic plasticity formulation proposed in [37] is generalized and
extended to ensure invariance for doubly-symmetric beam cross sec-
tions. The yield function is of the type proposed by [36] and determi-
nation of parameters as well as gradual change of shape and inclusion
of shear effects are discussed. A novel two-step return algorithm that
includes the effects of distributed loads is introduced and shown to
increase the robustness of traditional single-step return algorithms
considerably. Finally, examples of realistic tubular offshore structures
are used to illustrate the effect of the plasticity formulation as well as
the robustness of the equilibrium element formulation and the modified
return algorithm. The examples highlight the differences between
standard element and plasticity formulations and the present integrated
formulation, illustrating the necessity of having an accurate re-
presentation of cyclic plasticity and local joint mechanisms.

2. Elasto-plastic frame element

The frame element is defined in an equilibrium format with six
deformation modes with energy conjugate section forces as illustrated
in Fig. 1. Details of the equilibrium formulation may be found in
[26,58]. The deformations and the section forces are arranged in the
vectors

=∼ u φ φ φ φ φu [ , , , , , ] ,x z z y y
T

t 1 2 1 2 t (1)

̃ = ∼∼ ∼ ∼ ∼ ∼N T M M M Mq [ , , , , , ] ,z z y y
T

e 1 2 1 2 (2)

L. Tidemann, S. Krenk Engineering Structures 168 (2018) 191–204

192



Download English Version:

https://daneshyari.com/en/article/6736920

Download Persian Version:

https://daneshyari.com/article/6736920

Daneshyari.com

https://daneshyari.com/en/article/6736920
https://daneshyari.com/article/6736920
https://daneshyari.com

