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A B S T R A C T

In this study, the structural behavior of a long-span cable-supported bridge after the sudden rupture of one of its
axial cables is of concern. Cable failure produces large bending moments on the girder of the bridge. Henceforth,
the focus of this study is to find the “maximum bending moment” on the girder due to the cable failure. For this
purpose, an analytical approach based on differential equations of the system will be used. Then, an approx-
imation function for a simplified bridge model in a cable-loss scenario will be derived. The use of the least
squares method is also applied to minimize the error of the approximation function. The proposed approx-
imation function has been checked by numerical models, and its good accuracy has been proven. The results
show that by increasing the ratio of the bending stiffness of the girder to the axial stiffness of the cables, cable
failure produces a larger bending moment on the girder.

1. Introduction

Progressive collapse is defined as the spread of an initial local
failure from element to element, eventually resulting in the collapse of
an entire structure or a disproportionately large part of it [1]. It is
characterized by a distinct disproportion between the triggering event
and the resulting widespread collapse [2].

The two most important guidelines that address progressive col-
lapse, the General Services Administration guideline (GSA [3]) and the
Unified Facilities Criteria (UFC [4]), are exclusively designed for
buildings. Standards addressing progressive collapse and cable-loss
scenarios in bridges are few and far between. According to Post-Ten-
sioning Institute (PTI [5]), the sudden loss of any one cable must not
lead to the rupture of the entire structure. In addition, regarding the
simplified design method (i.e. linear static analysis), a dynamic am-
plification factor (DAF) of two must be applied. However, recent re-
search proves that the suggested DAF is only safe for the design of
cables, and that it is not safe for the design of pylons or girders with
negative moments [6–10].

Recently, the issue of cable failure in bridges has been studied in
some research experiments [11–15]. In [14,15], the collapse behavior
of a cable-stayed bridge in a cable-loss scenario has been investigated. It
was shown that the initial failure of three adjacent short cables, which
were responsible for the stabilization of the bridge girder in compres-
sion, caused the lack of bracing in the girder. The girder began to
buckle in the vertical direction as a result of high normal forces, and

finally an instability type of collapse occurred in the girder. The dif-
ferent types of collapse and their specifications are explained compre-
hensively in [16,17]. A parametric study has also been conducted on
the dynamic response of cable-stayed bridges to the sudden failure of a
cable. It was shown that the sudden failure of a cable produced large
bending moments on the deck and pylons [9,10].

In this study, a simplified bridge model is considered. Then, an
analytical approach based on differential equations of the system is
used, and an approximation function for a long-span cable-supported
bridge is derived. It is shown that the proposed approximation function
and the results of numerical models are in a good agreement.

2. Simplified bridge model

To use the analytical approach, a simplified bridge model is con-
sidered. In Fig. 1, the simplification procedure is depicted. The sim-
plified model consists of a beam suspended from tension elements. As
shown in Fig. 1, the simplified model considers a unique axial stiffness
in each cable. To make the mathematical procedure straightforward, a
reference axial stiffness (K) is used and the stiffness of the cables is
expressed as a multiple of the reference stiffness (Ki = δiK).

In this study, only a part of the bridge is considered. Therefore,
there are interferences in the border regions. The borders to account for
the additional regions of the girder are investigated on the one hand as
fixed supports, and on the other hand as hinged supports. By doing so,
two extreme values limiting the real behavior of actual systems are
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determined. The investigation of these two extreme conditions for long-
span systems showed relatively similar results regarding the maximum
bending moment due to the cable failure. It should be noted that the
critical section of the girder is in the center of the system and far from
border regions. Therefore, to make the analytical approach easier, a
hinge is assumed at the border regions. The main target of this study is
to develop an analytical method for the analysis of a long-span cable-
supported bridge suffering from a cable failure. For this purpose, a
conceptual approach is applied. Hence, some differences between an
accurate bridge model and the simplified model used here are un-
avoidable. For instance, assuming rigid upper cable supports does not
exactly correspond to the actual structures. It should be mentioned that
in some cases torsion can be neglected. For example, in mono cable
plane systems with box girder or systems with two cable planes with
edge girders the torsion effect is negligible.

It is assumed that the stiffness of the girder is the same in all cross
sections. The axial stiffness of the cables should be determined with
consideration of the entire structural system of the actual bridges. The
target is to find a general equation for the “maximum bending moment”
of the girder due to the cable failure. Therefore, the number of cables is
variable.

In the simplified model, the distance between two adjacent cables is
L, the axial stiffness of the cable is Ki and the bending stiffness of the

girder is Kb = 12EI/L3. The failed cable is in the center and the whole
system is symmetrical. The load which was carried by the failed cable is
F, and the absorbed load in other cables due to the cable rupture is F1 to
Fn (corresponding to K1 to Kn). The calculated forces in cables and
consequently the bending moment on the girder are increased cable
force and increased bending moment due to the cable rupture.

3. Analytical approach for the determination of the “maximum
bending moment” of the girder due to the cable loss

The simplified system in Fig. 1 is a symmetrical system and could be
solved by the superposition principle and boundary conditions taking
into account the symmetry of the system. The elastic behavior of the
girder is expressed as follows:

= −M x EI d v
dx

( )
2

2 (1)

where EI is the flexural stiffness of the girder, I is moment of inertia of
the girder, v is the vertical displacement and x is the distance of the
section from the left end of the beam. The bending moment, M x( ), is a
function of x and could be found as follows:

⩽ ⩽ =x L M x F x0 ( ) n (2)
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Fig. 1. From bridge to model, based on [18].
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