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A B S T R A C T

The exact solution of inextensible catenaries in Cartesian coordinates is utilized to propose an efficient two-node
cable element for static analysis of three-dimensional cable structures. This element can consider out of plane
inclination without using any transformation matrices. Since the element is formulated within the framework of
large curvature assumption, cables with large sag, as encountered in long-span cable-stayed bridges and sus-
pension bridges, can be modeled accurately. The proposed element also accounts for the thermal effects. By
defining the stiffness component as the ratio of infinitesimal load increment to infinitesimal increase in length,
explicit entries of the tangent stiffness matrix are derived through equating the total differentiation of the
strained length and the elastic elongation of the cable. The tangent stiffness matrix is available in a closed form
and the need of taking the inverse of the flexibility matrix, which is faced in the solution procedure of elastic
catenary, is eliminated. The robustness of the suggested technique is established through investigation of sig-
nificant case studies, including slack and pre-tensioned spatial cable networks. Excellent agreement between the
present results and those found in the literature indicates the versatility of the proposed scheme.

1. Introduction

Over the past two centuries, analysis and design of cable-supported
structures have received huge attention as a crucial topic in the main-
stream of scientific research. Owing to their unique mechanical and
aesthetic features, cables are widely applied as constituent parts of
many engineering structures, such as, suspension roofs, long-span sus-
pension bridges, cable supported bridges and power transmission lines.
Cables are flexible members that exhibit highly nonlinear behavior
when subjected to external loads. This structure, within a cable-sup-
ported body, undergoes large displacements and rotations and sustains
significant portions of load. Pretension is proposed as a simple tech-
nique to alleviate the deflection of cable structures. Numerous studies
can be found in the literature addressing various schemes for in-
vestigation of the behavior of cable structures. In fact, the cable
members have been widely modeled, based on two different ap-
proaches, namely the finite element method with interpolation func-
tions and also the analytical approach which makes use of explicit ex-
pressions of a catenary.

In the first scheme, a cable is represented by a number of two-node,
multi-node or generally curved elements. The displacement field within
the element domain is approximated using the interpolation functions.
In 1965, Ernst suggested that a cable member can be modeled by truss
elements for the first time. He also introduced a modified axial stiffness
to account for the sag effects of a hanging cable [1]. Although his

method provided satisfactory results in some cases, it was rather in-
efficient since a large number of truss elements was required to achieve
an acceptable level of accuracy. Later, Knudson embarked on the im-
provement of this method in 1971 [2]. Various researchers have further
developed the truss element by introducing the nonlinear behavior and
various loading conditions [3,4]. Besides, different types of two-node
elements with rotational degrees of freedom have been proposed by
several researchers [5–7]. The cable members have been also modeled
based on the isogeometric approach with Lagrangian shape functions.
In this method, the shape of an infinitesimal cable element is approxi-
mated using multi-node curved elements [8,9]. Wu and Su im-
plemented a Four-node isogeometric element for analysis of cable
structures [10]. In 2013, a six-node isogeometric element was proposed
by Wang et al. [11]. The main drawback of the isogeometric elements in
modeling of cable assemblies is their complexity and large number of
degrees of freedom. This makes the analysis laborious and significantly
time consuming. Further, since the explicit form of the tangent stiffness
matrix is not available, numerical approaches must be iteratively
adopted to derive the tangent stiffness matrix. In some cases, such
analysis approaches lead to the numerical instabilities [12].

On the other hand, an element based on the analytical expressions
of the elastic catenary was first utilized by O’brien and Francis [13].
They showed that each cable member within a cable structure can be
modeled using a single analytical element. In this method, the overall
equilibrium of a stretched cable element is satisfied in the Lagrangian
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coordinates, and the exact profile is derived by imposing the boundary
conditions at the end of the cable. Many researchers have developed the
elastic catenary element by introducing thermal effects and different
loading types [14–20]. Salehi Ahmad Abad et al. proposed an extended
three-dimensional catenary element which takes the thermal effects and
distributed lateral loads in different directions into account [21]. Na-
ghavi Riabi and Shooshtari implemented the elastic catenary along with
the Ramberg-Osgood stress-strain relationship to investigate the effects
of material nonlinearity on the behavior of cable networks [22]. Re-
cently, Crusells-Girona et al. have employed a mixed variational ap-
proach in curvilinear coordinates based on the elastic catenary ex-
pressions to model cables with material and geometric nonlinearity
[23]. Moreover, a number of researchers have adopted the parabola
approach for analysis and design of practical cable structures. Since the
parabola approach disregards the large sag effects, it provides an ap-
proximate solution to the hanging cables. It is proved that the error of
the method increases by increasing the sag to span ratio. Therefore, this
approach is unsuitable for modeling deep cables [24–26].

In addition to the aforementioned finite element approaches, many
researchers have developed innovative ways for nonlinear analysis of
cable structures. Lewis employed the principle of minimum total po-
tential energy along with the dynamic relaxation method to assess the
efficiency of pure numerical approaches in analysis of pre-tensioned
cable nets [27]. A two-link structure was utilized by Kwan to develop a
simple technique for nonlinear analysis of pre-tensioned cable struc-
tures. In this approach, similar to a spatial truss, the nonlinear equili-
brium equations were written for each node, and then, they were solved
by using an iterative method [28]. Stefanou and Moossavi Nejad
minimized the total potential energy of the entire structural assembly
by the conjugate gradient method to obtain the equilibrium state of the
cable structures [29]. The efficiency of various dynamic relaxation
methods in analysis of cable structures was studied by Hüttner et al.
[30]. To model single-span cables considering extensibility and thermal
strains, the finite difference approach was applied by Bouaanani et al.
[31,32].

Although the elastic catenary provides highly accurate results, the
tangent stiffness matrix is not explicitly available. Therefore, a com-
plicated iterative procedure must be adopted to determine the nodal
forces and establish the flexibility matrix. To perform a very systematic
analysis, the inverse of the flexibility matrix must be also computed to
obtain the stiffness matrix. Thus, many difficulties arise during the
analysis procedure of the elastic catenary. On the other hand, simplified
cable approaches, such as elastic parabola or elastic straight shape, are
problematic in addressing the large sag effects in the deep cables.
Moreover, these elements must be transformed from a local axis to the
global one via transformation matrices to be able to consider inclina-
tion. This action further increases the computational complexities. To
improve these drawbacks, a three-dimensional cable element is pro-
posed in this study for static analysis of the general cable structures.
The elemental shape considers inclination without using transforma-
tion, and it takes both the large sag and thermal strain effects into ac-
count. To make the nonlinear analysis easier, the components of the
tangent stiffness matrix are presented by relatively simple closed-form
expressions. Since the profile of the hanging cable is given by hyper-
bolic functions, for convenience, the proposed element is referred to as
the ‘elastic hyperbola’. The numerical outcomes of the studied problems
reveal the accuracy and efficiency of the present element in the non-
linear analysis of spatial cable structures.

2. Formulation of the hyperbolic cable

The configuration of a perfectly flexible and elastic cable element
stretched between two nodes, namely i and j, is depicted in Fig. 1. As it
can be seen, the projected lengths along the x, y and z directions are
designated lx, ly and lz, respectively. Further, the nodal forces and nodal
displacements along the global axes, initial unstrained length and the

self-weight per unit unstained length are denoted by F, u, S and w, in a
respective manner.

The cross-sectional area, elastic modulus and thermal expansion
coefficient of the cable are supposed to be constant, and the formulation
is developed within the framework of small strains. Note that L and H
correspond to the horizontal projected length and the horizontal force
of the cable along the local axis, ζ , respectively. Herein, it is assumed
that the profile of the cable is sufficiently deep. In other words, no
limitations are imposed on the curvature of this structural element. It is
worth mentioning that removal of this assumption leads to the simpli-
fied elastic parabola approach. Based on the foregoing hypotheses, the
profile of the cable hanging under its self-weight with respect to the ζ
axis can be defined by the following hyperbolic function [17]:
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Another parameter is defined as = +L l lx y
2 2 . It can be easily shown

that the cable tension at the Cartesian coordinates has the next ex-
pression:
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where T is the tension of the cable. After deformation, the strained
length of the cable element can be obtained as:
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where P stands for the strained length of the cable element. Since a real
cable has finite axial flexibility, the inextensibility condition must be
relaxed to obtain its elastic elongation. For an extensible cable with
constant material properties, the Hooke’s law is held:
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where ε, E, A, α and Δϑ refer to the cable strain, elastic modulus, cross-
sectional area, thermal expansion coefficient and uniform variation in
the temperature, respectively. Substituting for the cable tension from
Eq. (3) into Eq. (5) and performing some mathematical manipulations
yield:

Fig. 1. Configuration of the hyperbolic cable element under self-weight.
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