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A B S T R A C T

This study investigates the first-order second-moment structural reliability of circular reinforced concrete (RC)
bridge columns subjected to vehicular impact, explosive blast, and sequential vehicular impact and explosive
blast loading. The analysis is performed for five vehicle types of increasing size, mass, and explosive charge
capacity. The structural reliability under vehicular impact is shown to be highly sensitive to column diameter,
reinforcement ratio, and vehicle velocity. The structural reliability under explosive blast loading is shown to be
highly sensitive to column diameter, reinforcement ratio, and blast standoff distance. In general, the structural
reliability is lower under explosive blast loading. The structural reliability under sequential loading is evaluated
by the newly proposed resistance reduction method and by fault tree analysis. A resistance reduction factor for
the second event is defined as a function of the probability of failure under the first event. The resistance
reduction method is shown to be more conservative than fault tree analysis and has the added benefit of allowing
for the derivation of the density function for performance under sequential loading.

1. Introduction

Human safety and asset protection are the fundamental tenets of
structural design. To that end, structures are designed to withstand self-
weight, service loads, and environmental loads as deemed appropriate
by relevant design codes [1]. Economic concerns and the low prob-
ability of occurrence generally preclude the design of civilian structures
to withstand hazardous loadings such as impact or explosive blast.
Traditionally, only military or other high-risk structures warrant these
considerations. However, with increasing terrorist activity, the design
of civilian infrastructure to withstand such hazardous loads is of in-
creasing importance.

Existing design codes allow for individual application of hazardous
loadings but do not include provisions for sequential or simultaneous
application of multiple hazardous loadings [1,2]. The ability of a
structure to resist damage is dependent not only on the design of the
structure, but also on the loads and combinations thereof experienced
by the structure [3]. Consideration of loads in sequence is of particular
importance in the case of hazardous loadings. An improved under-
standing of residual capacity in structural elements is necessary to more
adequately model the stability of damaged structures [4]. A structure
may suffer from reduced load capacity as the result of some initial
loading and may then be immediately subjected to an additional load.

For example, a structure may be subject to sequential vehicle impact
and blast loadings when a vehicle carrying an explosive charge collides
with a structural element. This type of even may be accidental or the
result of an intentional act of terrorism.

Buildings have typically been the focus of blast damage analysis, but
it is valuable to extend these analyses to bridge structures for several
reasons [5,6]. The social and economic impact of removing bridges
from service in the event of damage is significant [7]. Bridges are also in
most cases easily accessible, relatively unsecured, and subject to limited
surveillance. Bridge piers are of particular interest because local failure
of these individual components often leads to progressive failure of the
entire structural system. A number of studies have investigated the
individual—but not sequential—effects of vehicular impact and ex-
plosive blast loading on bridge piers [8–12].

Vehicular impact is the third leading cause of bridge damage or
failure [8,13]. Damage in vehicle-bridge impact events occurs si-
multaneously to the vehicle and the bridge element as a result of the
compliance of the vehicle [9]. The failure mechanisms in this type of
impact are similar to those in static loadings and can therefore be
treated as such [9]. Though short in duration, blast loadings are par-
ticularly catastrophic due to their high intensity. An explosive blast
results in a very high-velocity shock wave, which is the primary cause
of damage; if the charge weight and standoff distance are known, then
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it is possible to estimate the resulting damage to a structure [5,6,14,15].
The objective of this study is to examine the effects of sequential

vehicular impact and blast loading on the structural reliability of cir-
cular reinforced concrete (RC) bridge piers. To that end, this paper will
discuss:

1. The probability of failure of a circular RC bridge pier subjected to
vehicular impact and the impact loading factors that most con-
tribute to high probabilities of failure;

2. The probability of failure of a circular RC bridge pier subjected to
blast loading and the blast loading factors that most contribute to
highly probable failure; and

3. The probability of failure of a circular RC bridge pier subjected to
sequential vehicular impact and blast loading.

2. Analytical procedure

2.1. First-order second-moment (FOSM) reliability analysis

Reliability analyses are performed to evaluate the performance of
structures in real-world conditions with uncertain loadings and struc-
tural details. Simple structural analysis will show if a structure will or
will not fail under precise conditions; in cases where the structural
demand or resistance are non-deterministic, a reliability analysis is
instead used to determine the likelihood of failure. The FOSM reliability
analysis described here is conducted according to the following pro-
cedure for the individual cases of vehicular impact and explosive blast
loading:

1. Identify the system and define the limit state equation (performance
function);

2. Identify variables as deterministic or non-deterministic; assign va-
lues and distributions according to relevant literature and building
code;

3. Analytically solve for the FOSM mean-value reliability index and
probability of failure; and

4. Validate the FOSM mean-value results using Monte Carlo analysis.

The structural reliability under sequential loading is then analyzed
by the resistance reduction method and by fault tree analysis.

2.1.1. FOSM reliability analysis for a single event
The performance function for a system takes the general form

= −P Z Q where Z is the resistance or capacity and Q is the demand or
load. The performance function is defined such that:
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P Z Q( , )
0 for a safe structure
0 at the limit state
0 for failure (1)

The resistance Z and demand Q are functions of a number of vari-
ables which are either deterministic or non-deterministic. The former
are known with certainty while the latter are continuous random
variables that follow some known or assumed frequency distribution. In
simple cases where Z andQ are functions of one or perhaps two random
variables, the probability density function associated with P Z Q( , ) may
be solved analytically. The probability of failure Pf can then be found by
integration of the resulting density function over the failure region (i.e.,

<P Z Q( , ) 0). The reliability index β is the inverse of the coefficient of
variation of P Z Q( , ). If P Z Q( , ) is Gaussian, or can be thus approximated,
the reliability index and probability of failure are related by Eq. (2),
where −Φ 1 is the inverse of the tail probability function of the standard
normal distribution.

= − −β PΦ ( )f
1 (2)

It is often the case that Z and Q are complex functions of many non-
deterministic variables. It may then be impractical or impossible to

analytically solve the density function associated with P Z Q( , ). The re-
liability index for a linear performance function

= + ∑ =P Z Q a a X( , ) i
n

i i0 1 is given by Eq. (3), where μXi and σXi are the
mean and standard deviation of Xi [2].
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When the performance function is non-linear, it is convenient to
construct a linear approximation of the performance function by Taylor
series expansion. The reliability index is then given by Eq. (4) [2].
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Eq. (2) still provides a valid approximation of the probability of
failure as long as the density function associated with P Z Q( , ) can be
assumed Gaussian (or approximately so). In either case, an approx-
imation of the density function associated with P Z Q( , ) can be found by
recognizing that the reliability index is the inverse of the coefficient of
variation (i.e., =β μ σ/ ) and that the density function is centered about
the expected value of the performance function =P Z Q P Z QE[ ( , )] ( , ),
where Z and Q are the mean values of the resistance and demand.

It may also be convenient to adopt a numerical approach for relia-
bility analysis. In this case, the Monte Carlo method can be employed. If
the resistance is XZ ( ) and the demand is YQ ( ), where = …X X X X{ , , , }m1 2
and = …Y Y Y Y{ , , , }n1 2 , then a set of N random observations can be gen-
erated using the known density function associated with each Xi and Yi .
The density function associated with P Z Q( , ) can then be approximated
by the frequency distribution of the set = −P X YZ Q( ) ( )k k k where

= …k N1, , . A numerical approach may be favored over an analytical
solution for a number of reasons. It is convenient to assume that the
density function associated with P Z Q( , ) is Gaussian (or approximately
so). This may be a poor assumption if any Xi or Yi are not Gaussian. The
Monte Carlo method can be used to evaluate the suitability of this as-
sumption. If a relatively small number of Xi or Yi are non-Gaussian, or
the non-Gaussian variables are approximately Gaussian (e.g., some log-
normal, beta, or Poisson distributions), the set Pk may closely resemble
a Gaussian, and Equations (2)–(4) remain valid. In cases where the set
Pk is decidedly non-Gaussian, then the cumulative frequency distribu-
tion resulting from the Monte Carlo analysis must be used to approx-
imate the reliability index and probability of failure. The main draw-
back of the Monte Carlo method is slow convergence; Monte Carlo
analyses are known to converge at a rate of the inverse square root of
the number of simulations ( N1/ ). This is of increasing importance as
the number of non-deterministic variables increases. Alternative
methods such as the Latin Hypercube sampling method offer improved
computational efficiency and fast convergence, but the more ubiquitous
Monte Carlo method is used in this paper.

2.1.2. FOSM reliability analysis for sequential loading
The structural reliability of a system subject to sequential events is

typically modeled by fault tree analysis, wherein the probability of
failure of a system subject to n independent loadings is defined ac-
cording to the laws of compound probability [3]. The probability of
failure due to the sequential loadings P E( )f is given by Eq. (5) where
P E( )f i is the probability of failure of the system due to the i-th event.

∏= − −
=

P E P E( ) 1 [1 ( )]f
i

n

f i
1 (5)

Eq. (5) is derived with the assumption that the failure events are in-
dependent. This is a poor assumption in the case of sequential loading,
because the damage that occurs in the structure due to the first loading
necessarily increases the probability of failure due to successive load-
ings. Take, for example, a simple case where the probability of failure of
a column under impact loading is one-half and the probability of failure
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