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A B S T R A C T

In a rectangular concrete-filled steel tube (CFST) column under axial compression, the concrete is under non-
uniform and anisotropic confining stresses. To simulate such complicated triaxial stress field, finite element (FE)
modelling is an effective tool. However, most previous FE models based on the plasticity theory augmented with
associated or non-associated flow rules significantly underestimate the lateral and volumetric expansions of
concrete at the inelastic stage and thus require solution dependent adjustments for compensation. Herein, an
analytical lateral-axial strain relation of confined concrete derived from regression analysis of published ex-
perimental results is incorporated in a new FE model for the analysis of axial loaded rectangular CFST columns.
This analytical lateral-axial strain relation allows direct evaluation of the lateral strains and should more ac-
curately predict the lateral and volumetric expansions of confined concrete than the plasticity theory. The new
FE model is applied to analyse tested specimens in the literature for verification and then used in a parametric
study to evaluate the ductility of axially loaded rectangular CFST columns with different structural parameters.

1. Introduction

Since the 1960s, extensive experimental studies on concrete-filled
steel tubes (CFST) have been carried out [1,2] and it is now well re-
cognized that the inelastic lateral expansion of concrete under axial
compression would induce lateral confining stresses acting onto the
concrete to enhance its axial strength and ductility. For structural
analysis and design, various theoretical models of CFST in the form of
simple empirical models [3–5] or sophisticated finite element (FE)
models [6–11] have been developed, among which the FE models are of
course more powerful.

In most FE models, the plasticity theory is employed to model the
constitutive behaviour of concrete and Drucker-Prager’s (D-P) linear
function [6–8] or hyperbolic function [9–11] is used to represent the
plastic flow potential such that the increment of plastic volumetric
strain εv

p is equal to λo⋅tan ψc where ψc is the dilation angle normally set
to be a constant and λo is the stress dependent increment of effective
plastic strain to be determined at each loading step to make sure the
stress state lands on the D-P yield surface. However, such a constant ψc
setting is not able to capture the nonlinear lateral-axial strain relation of
confined concrete. Yu et al. [12] revealed by comparing the FE analysis
results based on plasticity theory with the experimental results that the
then existing FE models significantly underestimate the lateral expan-
sion of concrete under axial compression. Some novel plastic flow

potential models have emerged [13,14], but they still underestimate the
lateral and volumetric expansions of confined concrete at the inelastic
stage [15].

Yu et al. [12] pointed out that, in order to calculate the confining
stresses accurately, ψc should be expressed as a function of plastic de-
formation, stress state and rate of confinement increment, or in other
words, as a solution-dependent field variable (SDFV) in the language of
the general-purpose FE software ABAQUS, thus necessitating an extra
level of numerical iteration to achieve convergence. They derived the
function for ψc based on the assumption of σ1= σ2, i.e. isotropic con-
fining stresses, which is applicable only in certain limited cases, such as
circular CFST under concentric compression. To enable the use of the
SDFV approach when σ1≠ σ2, they employed an effective confining
stress calculated from σ1 and σ2 as a compromised solution [16].
Nevertheless, although the situation of σ1≠ σ2 is fairly complicated,
recent research demonstrated that the minimum of σ1 and σ2 can be
treated as an effective confining stress for predicting the axial strain
hardening and softening behaviour of confined concrete [17–19].

To overcome the above difficulties, it is proposed to directly eval-
uate the lateral strains of the confined concrete from the axial strain and
confining stresses during the FE analysis. Frankly speaking, concrete is
not exactly plastic and modification of the plasticity theory to improve
its estimation of lateral strains is not theoretically sound. Herein, a
method of incorporating an analytical lateral-axial strain relation of
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confined concrete in a new FE analysis framework for application to
rectangular CFST columns is introduced. This FE analysis framework,
implemented by a Fortran 90 program, is verified by analysing and
checking against test results from the literature [20–23] and then em-
ployed in a comprehensive parametric study to evaluate the effects of
aspect ratio, concrete cylinder strength, steel yield strength and steel
tube thickness on the ductility of rectangular CFST columns.

2. FE modelling and numerical procedures

2.1. Modelling of concrete

The global coordinate system is denoted by “x-y-z”, and the local
coordinate system in the principal directions is represented by “1-2-3”,
where “x-y” and “1-2” are the lateral directions (i.e. the in-plane di-
rections), and “z” and “3” stand for the axial direction (i.e. the normal-
to-plane direction). The “z-axis” in the global coordinate system coin-
cides with “3-axis” in the local coordinate system. Since the confined
concrete to be analysed is mostly under compression, the sign con-
vention adopted is “compression-positive”.

By regression analysis of experimental results from many different
sources, Dong et al. [24] have derived an analytical model for pre-
dicting the lateral strains of confined concrete. The principal lateral
strain ε1 in this model is expressed as:
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where Ec, νc and fc are the Young’s modulus, Poisson’s ratio and cylinder
strength of the concrete. The term ε1

p in the above expressions is the
inelastic lateral strain, which is equal to zero at the elastic stage and
begins to take effect when splitting cracks are formed at ε3 larger than
the threshold strain ε3,1

lim. The value of the threshold strain ε3,1
lim may be

evaluated from:
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in which εco is the axial strain corresponding to the cylinder strength of
the concrete. This axial strain may be taken as =ε f

E fco
4.26c

c c4 if there is no

experimental data [25].
The strains ε2, ε2

p and ε3,2
lim in the lateral principal direction 2 can be

similarly obtained by substituting the subscript 1 in the above equations
with the subscript 2. With the inelastic portions of ε1 and ε2, namely ε1

p

and ε2
p, so determined, the constitutive matrix equation of the concrete

is derived as:
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To model the axial strain hardening/softening behaviour of con-
fined concrete under triaxial stress state, a triaxial failure surface is
needed to defined the strength envelope of confined concrete when
σ1≠ σ2. Menétrey and Willam’s failure surface [26] is opted for; it is
given by the following mathematical expressions:
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where ξ, ρ and θ are the Haigh-Westergaard coordinates computed from
the stress invariants I1, J2 and J3. The parameter e is the out-of-
roundness parameter that determines the shape of intersection between
the loading surface and the deviatoric plane and normally ranges from
0.5 (triangular shape) to 1.0 (circular shape). Assuming that the biaxial
compressive strength of concrete fbc is equal to 1.5⋅ fc

0.925, as per Papa-
nikolaou and Kappos [13], a conforming formula for e can be derived
as:
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For a given concrete with certain cylinder strength, e has a constant
value.

Lastly, the axial stress-strain curve follows Attard and Setunge’s
model [25], which was derived from triaxial tests of concrete under
active confinement. Its equations are given by:
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where fcc is the confined strength and εcc is axial strain corresponding to
fcc. The values of fcc and εcc are determined by imposing the condition
that the stress state (σ1, σ2, fcc) lands on the failure surface and taking
the value of fr as the minimum of σ1 and σ2 as mentioned before
[17–19]. The coefficients a1, a2, a3 and a4 governing the shape of the
stress-strain curve have different values for the ascending and des-
cending branches. Their formulas can be found in Attard and Setunge’s
article [25] and are therefore not presented here again for brevity.

2.2. Modelling of steel tube

The steel is assumed to be linearly-elastic and perfectly-plastic. It is
also assumed to yield according to the von-Mises yield surface defined
by:
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Since perfect plasticity means neither strain-hardening nor strain-soft-
ening at the post-yield stage, the von-Mises stress σv is a constant equal
to the yield strength of steel fy. The associated flow rule is applied to
calculate the increments of plastic strains εx

p, εy
p, εz

p and γxy
p in the steel:
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where as mentioned before, λo is the stress-dependent increment de-
termined by a numerical process to keep the stress state in compliance
with the yield surface.

The constitutive equation of the steel at element level is therefore
given by:
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