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A B S T R A C T

The Smoothing Evolutionary Structural Optimization (SESO) technique was extended to solve 2D elastic problems
with constraint of displacements or natural frequencies. At the end of each finite element analysis, a scalar
representing the sensitivity due to the removal of an element is calculated. Thus, the elements that have the
lowest values are removed from the structure, while the displacements in prescribed locations are kept inside of
limits stated or the first frequencies are maximized. The proposed technique proved to be adequate and efficient
in the execution of shape and topological optimization.

1. Introduction

Topology Optimization (TO) can significantly improve the perfor-
mance of structures for many engineering applications. It has been
exhaustively studied and various topology optimization methods have
been developed over the past few decades. The main optimization
techniques include: (a) Homogenisation method - Has been introduced
by Bendsøe and Kikuchi [3], which describes the amount of material
(i.e. density ρ) at each point of the design domain. Typically, this pro-
blem is represented by an initial fixed domain design that is discretized
with a finite element mesh. Moreover, the use of multiple design vari-
ables for each element increases the computational cost of this method,
(b) SIMP method - In order to overcome the difficulties associated with
the homogenization method, Bendsøe [4] proposed a density based
approach, also called as the SIMP (solid isotropic material with pena-
lisation) method, Rozvany et al. [40]. SIMP method is based on the idea
of using an isotropic material within each element of the FE model and
is assumed to be a function of the penalized material density, described
by an exponent power. SIMP can generate results with checkerboard
patterns. Secondly, as it results in mesh dependent optimal solutions, to
avoid the occurrence of checkerboard formations and the mesh de-
pendency issues filtering techniques can be used according to Sigmund
and Petersson [41] and (c) ESO method - Evolutionary structural op-
timization is one of most popular techniques for topology optimization,
Xie and Stven [52,52,36], Tanskanen [50]. The ESO method was first
proposed by Xie and Steven in the early 1990s [52] and has since been
continuously developed to solve a large variety of topology

optimization problems [56].
Ghabraie [15] presents an approach in which the ESO can be

mathematically proved (justifiable), but also discusses that such an
approach can result in an inefficient local optimal. A bidirectional
version of ESO (BESO) was proposed by Querin et al. [37] and Yang
et al. [57], which allows the addition of new elements to the parts of the
structures. The term SERA (Sequential Element Rejection and Admis-
sion) was later proposed by Rozvany and Querin [39] to distinguish this
method from Darwinian-based evolutionary methods. In more recent
work on BESO, some researchers have adopted a more rigorous ap-
proach to clearly indicate the optimization problem based on sensitivity
analysis of objective function. For example, Huang and Xie [19–22,25],
Ghabraie [14], Ghabraie et al. [16] and Nguyen et al. [33].

The TO with displacement constraint has as basic strategy the
control of local displacement at pre-defined locations, usually at the
point of loading and in the direction of loading and it can be found in
the literature, Liang et al. [27], Rong and Yi [38] and Suresh et al. [48].
Farahpour [13] and Sonmez [47] have used pre-defined displacement
constraints applied in specific structural systems, such as truss struc-
tures. Zuo and Xie [60] present a global control method for displace-
ments of continuum structures using a new approach to BESO.

Frequency optimization is applicable in many fields of engineering,
aeronautical and automotive industries. The works of Tenek and
Hagiwara [51] and Ma et al. [32] developed frequency optimization
problems using the homogenization method. Kosaka and Swan [26]
have used the SIMP method. However, the SIMP model has been proven
to be inadequate for frequency optimization due to local artificial
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modes in lower mass areas. Therefore, the modified SIMP model using a
discontinuous function was proposed and successfully applied by Ped-
ersen [35] and Du and Olhoff [12] to solve the problems of frequency
optimization. Huang et al. [24] developed a modified SIMP model
which was able to effectively avoid artificial modes in regions with
lower density values. In this model, it combines rigorous criteria for
topological optimization in frequencies of continuum structures with
the use of a new bidirectional evolution optimization procedure – BESO
whose theory and formulation is described in Huang and Xie [19–21].
The ESO/BESO methods were used for frequency optimization by sev-
eral authors and can mention Xie and Steven [55], Zhao et al. [59] and
Yang et al. [57]. Due to the direct elimination of elements of the design
domain, the ESO/BESO methods with “hardkill” procedure effectively
prevent localized vibration modes from occurring. The deficiencies
pointed out by Rozvany and Querin [39] for the methods quoted with
“hardkill” procedure also occur in frequency optimization problems. In
this sense, it is desirable that the elements of the design variables are
not directly eliminated from the domain, unless an equivalence of in-
termediate elements, i.e., soft elements are equivalent to void elements.
In this sense, in the present paper, it is proposed a simple method that
solves displacement and frequency optimization problems, using a filter
procedure that reduces the presence of the checkboard, monitoring the
optimization process that is performed by performance index, which
produces lighter structures than other optimization methods. This paper
potentializes the SESO technique to solve problems of topological op-
timization of elastic structures with dynamic loads and multiobjective
optimization with displacement and frequency constraints. In this
context, topology optimization problem for this purpose is formulated
under the finite element (FE) scheme. The sensitivity analysis is carried
out on the macro structure and the FE analysis in the macro structure
considers the boundary conditions and the external loads. To evaluate
the effect of removing the elements of the structure, a sensitivity
number has been defined, as presented by Zhao et al. [59], Chu et al.
[9–11], Yang et al. [57], Liang et al. [29] and Liang [30]. Then, a series
of elements with the lowest sensitivity numbers will be deleted from the
structure. The optimum structure configuration will be obtained by
repeating the FE analysis cycle, the calculation of a sensitivity number
and removal of elements until the specified displacements reach their
prescribed limits or the natural frequencies are maximized. Thus, a
variant of ESO called SESO is applied, created by Simonetti [42] and
expanded by Simonetti et al. [43–45], Simonetti et al. (2015), Simonetti
et al. [46] and Almeida et al. [2,1], which are based on a smoothing of
the heuristic of removal of the ESO method. Theoretically, one cannot
guarantee that such the evolutionary procedure can always produce the
best solution. However, the SESO technique provides a useful tool for
engineers and architects who are interesting in exploring structurally
efficient forms and shapes during the conceptual design stage of a
project.

The remainder of the paper is organized as follows: Section 2 deals
with the formulation of the problem SESO. In Section 3 formulates the
basic optimization problem for frequency and displacement. In Section
4, sensitivity numbers in frequency and displacement. Section 5 pre-
sents the numerical results from the proposed SESO method in dis-
placement and frequency. Concluding remarks are made in Section 6.

2. Formulation of the SESO problem

The minimization problem can be expressed in the following stan-
dard form:
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where f x({ }) is the objective function and x{ } is the vector of the design

variables. g x({ })j and h x({ })j refer, respectively, the inequality con-
straints and equality with k and l representing the number of inequality
and equality, respectively. xj

i and xj
f are the lowest and highest value of

the design variable xj and m is the total number of design variables. In
this sense, SESO technique has been successful in applying flat elastic
problems with stress and strain energy constraints. The optimization via
SESO is performed removing p% and returning (1-p%) of the elements
for structure, i.e., the element itself, instead associated physical or
material parameters, is treated as the design variable. Thus, un-
necessary regions have their elements removed so that their corre-
sponding stiffness matrices are eliminated. For this, the elastic modulus
of the elements can be chosen as design variables, Ej (j = 1,2,…,m),
where in its heuristic of removal the SESO presents typical character-
istics of the continuous optimization, once the remaining domain con-
tains: removed elements, with null stiffness (minimum), elements that
return for the structure, with intermediate stiffness and elements that
remain in the structure, with maximum stiffness. Thus, it is possible to
write the design variables as:

⩽ ∗ ⩽ = …α E E with j m0 1,2, ,j j
project

(2)

where m represents the number of elements in the design domain and
Ej

project indicates the design value of the modulus of elasticity of each
element and α a weighting factor that smoothes the elasticity matrix of
each element, see Fig. 1.

Therefore, to minimize energy through removing elements, it is
clear that the most effective way is to eliminate the elements having the
lowest values so that energy growth is minimal. In this sense, optimi-
zation problem in energy can be described as follows:
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where Ee is the elastic matrix of the element, εe is the vector of the
strains of the element, Ve is the volume of element, NE is the number of
finite elements of the mesh, K is stiffness matrix, =Ku F is the equi-
librium equation where F is the vector of the loads applied in the
structure, xi is the design variable of the ith element and X is the vector
of the design variables.

In this work, the SESO technique is expanded to the optimization
problem with frequency and displacement criteria, see section 3. The
method has presented results comparable to other different types of
methods such as ESO, BESO, SIMP and the Homogenization Method
which demonstrates the good performance of the method, through a
simple algorithm that can incorporate the self weight of the structure
during the optimization process, which is not observed in other
methods for the criterion of displacement.

Fig. 1. Smoothing of the volume of the elements removed in iteration i.
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