Contents lists available at SciVerse ScienceDirect

Thermochimica Acta

journal homepage: www.elsevier.com/locate/tca

Standard molar enthalpies of formation for the two mixed alkali/alkaline earth metal borates of LiBaB $_9O_{15}$ and NaBaB $_9O_{15}$

Ning Li, Rui-Bin Zhang, Zhi-Hong Liu*

Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China

ARTICLE INFO

ABSTRACT

Article history: Received 24 October 2012 Received in revised form 28 March 2013 Accepted 3 April 2013 Available online 17 April 2013

Keywords: Mixed alkali/alkaline earth metal borates Characterization Standard molar enthalpy of formation Solution calorimetry Two pure mixed alkali/alkaline earth metal borates with three-dimensional framework, LiBaB₉O₁₅ and NaBaB₉O₁₅, have been synthesized by high-temperature solid state reaction, and characterized by XRD, FT-IR, DTA-TG techniques and chemical analysis. The molar enthalpies of solution of LiBaB₉O₁₅ and NaBaB₉O₁₅ in 1 mol L⁻¹ HCl(aq), and of LiCl·H₂O(s)/NaCl(s) in [1 mol L⁻¹ HCl + H₃BO₃ + Ba(OH)₂·8H₂O](aq) have been determined by microcalorimeter at 298.15 K, respectively. From these data and with the incorporation of the previously determined enthalpy of solution of H₃BO₃(s) in 1 mol L⁻¹ HCl (aq), together with the use of the standard molar enthalpies of formation for Ba(OH)₂·8H₂O(s)/NaCl(s), H₃BO₃(s), HCl(aq) and H₂O(l), the standard molar enthalpies of formation of $-(6796.8 \pm 7.3)$ kJ mol⁻¹ for NaBaB₉O₁₅ and $-(6829.9 \pm 7.3)$ kJ mol⁻¹ for NaBaB₉O₁₅ were obtained on the basis of the appropriate thermochemical cycles.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Boron has two kinds of unique coordination, BO₃ and BO₄, which leads to the formation of a large variety of borates. Therefore, borates can be a resource for functional materials. The studies of alkali/alkaline earth metal borates have attracted considerable interest because some of these borates can be as nonlinear optical (NLO) materials, such as CsLiB₆O₁₀, BaB₂O₄ (BBO) and Ba₂Be₂B₂O₇ (TBO) [1,2]. Some borates have three-dimensional framework, such as LiBaB₉O₁₅ and NaBaB₉O₁₅ [3], in which both borates crystallize in the trigonal system with space group R3c and exhibit the same anionic group which is a three-dimensional framework built up from B₃O₇ rings, with channels along the c axis in which the alkaline earth Ba²⁺ and the alkaline Li⁺/Na⁺ ions are located [3]. In addition, nanoborate LiBaB9O15 was also obtained by Pushcharovsky et al. with hydrothermal synthesis systems [4]. Han et al. reported flux growth, spectroscopic studies, and thermal properties (including the thermal expansion, specific heat, thermal diffusion coefficient, and thermal conductivity) of single crystal of LiBaB₉O₁₅ [5,6]. However, there are no reports on the standard molar enthalpies of formation for LiBaB₉O₁₅ and NaBaB₉O₁₅.

Thermodynamic properties play very important roles in scientific research and industrial applications. Until now, the standard molar enthalpies of formation of many alkaline/alkalineearth metal borates have been reported [7–20]. As part of the continuing study of the thermochemistry of main group borates, this paper reports the determination of the standard molar enthalpies of formation of two mixed alkali/alkaline earth metal borates of $LiBaB_9O_{15}$ and $NaBaB_9O_{15}$ with three-dimensional framework by using a heat conduction microcalorimeter.

2. Experimental

2.1. Chemicals

All reagents were used as obtained from commercial sources without further purification. Table 1 summarizes relevant information on sample material purities. The water contents in $Ba(OH)_2$ and LiCl hydrates are consistent with those of the molecular formula of LiOH·H₂O and Ba(OH)₂·8H₂O, respectively.

2.2. Synthesis and characterization of samples

Single crystals of LiBaB₉O₁₅ were synthesized from a mixture of 0.168 g LiOH·H₂O, 0.197 g BaCO₃, 0.188 g Ga₂O₃ and 0.931 g H₃BO₃. This mixture was ground in an agate mortar and transferred to platinum crucible, which was heated in a furnace at 900 °C for 2 days, then cooled to 450 °C at a rate of $2.7 \circ Ch^{-1}$, followed by cooling to room temperature at a rate of $20 \circ Ch^{-1}$. The resulting colorless crystals were collected, and washed with deionized water and ethanol for three times, respectively. The single crystals of NaBaB₉O₁₅ were synthesized referring to literature [3].

The obtained samples were characterized by X-ray powder diffraction (Rigaku D/MAX-IIIC X-ray diffractometer with Cu K α 1

^{*} Corresponding author. Tel.: +86 29 81530805; fax: +86 29 81530727. *E-mail address:* liuzh@snnu.edu.cn (Z.-H. Liu).

^{0040-6031/\$ -} see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.tca.2013.04.009

 Table 1

 Chemical sample used in this study.

Chemical name	Source	State	Initial mole fraction
LiCI-H ₂ O	Aladdin	Solid	≥0.999
BaCO ₃	Sinopharm Chemical	Solid	≥ 0.990
	Reagent Co., Ltd.		
H ₃ BO ₃	Aladdin	Solid	≥0.998
Ga_2O_3	Aladdin	Solid	≥ 0.999
Na_2CO_3	Sinopharm Chemical	Solid	≥ 0.998
	Reagent Co., Ltd.		
Ba(OH) ₂ ·8H ₂ O	Jinjing Barium Salt	Solid	≥ 0.9948
	Chemical Co., Ltd.		

target ($\lambda = 1.5406$ Å) scanning the 2θ range with a speed of 8° min⁻¹), FT-IR spectroscopy (recorded over the 400–4000 cm⁻¹ region on a Nicolet NEXUS 670 spectrometer with KBr pellets at room temperature), single crystal X-ray diffraction (recorded by a CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.34.36 CCD automatic diffractometer with graphite monochromatized Mo K α 1 radiation ($\lambda = 0.7093$ Å)), and thermogravimetric analysis (TGA) (performed on a SDT Q600 simultaneous thermal analyzer under N₂ atmosphere with a heating rate of 10 °C min⁻¹). The chemical compositions of the samples were determined by EDTA titration for Ba²⁺, by NaOH titration in the presence of mannitol for B₂O₃ [21], and by ICP-AES elemental analysis (IRIS Advantage, charge-injection detector (CID), Thermo Scientific) for Li⁺ and Na⁺. The relative standard uncertainty u(r) in the titration experiments was estimated to be 0.2%.

2.3. Calorimetric experiment

All the enthalpies of solution were measured with a RD496-2000 heat conduction microcalorimeter (Mianyang CP Thermal Analysis Instrument Co., Ltd., China), which has been described in detail previously [20,22]. To check the performance of the calorimeter, the enthalpy of solution of KCl (mass fraction \geq 0.9999) in deionized water was determined to be (17.54 \pm 0.10) kJ mol⁻¹, which was in agreement with that of (17.524 \pm 0.028) kJ mol⁻¹ reported in the literature [23]. This shows that the device used for measuring the enthalpy of solution in this work is reliable.

The thermochemical reactions designed for the derivation of the $\Delta_{\rm f} H_{\rm m}^{0}$ of LiBaB₉O₁₅ and NaBaB₉O₁₅ are expressed as follows:

$$\begin{split} \text{LiBaB}_9\text{O}_{15}(s) \ + \ (\text{HCl}\text{-}54.561\text{H}_2\text{O}) \ = \ \text{LiCl}\text{-}\text{H}_2\text{O}(s) \\ & + \ \text{Ba}(\text{OH})_2\text{-}8\text{H}_2\text{O}(s) \ + \ 9\text{H}_3\text{BO}_3(s) \ + \ 31.561\text{H}_2\text{O}(l) \end{split}$$

$$\begin{split} \text{NaBaB}_9\text{O}_{15}(s) \ + \ (\text{HCl}\cdot54.561\text{H}_2\text{O}) \ = \ \text{NaCl}(s) \ + \ \text{Ba}(\text{OH})_2\cdot8\text{H}_2\text{O}(s) \\ & + \ 9\text{H}_3\text{BO}_3(s) \ + \ 32.561\text{H}_2\text{O}(l) \end{split}$$

The 1 mol dm⁻³ HCl(aq) solvent can dissolve all components of designed reactions, and its concentration, 1.0004 mol dm⁻³, was determined by titration with standard sodium carbonate. With the use of its density of 1019 kg m⁻³ (taken from chemical handbook), its concentration can also be expressed as the form of HCl-54.561H₂O. Total time required for the complete dissolution reaction was about 0.5 h. There were no solid residues observed after the reactions in each calorimetric experiment.

The standard molar enthalpies of formation of LiBaB₉O₁₅ and NaBaB₉O₁₅ could be obtained by solution calorimetries in combination with the standard molar enthalpies of formation of Ba(OH)₂·8H₂O(s), LiCl·H₂O(s)/NaCl(s), H₃BO₃(s), HCl(aq) and H₂O(1).

Fig. 1. FT-IR spectra of samples: (a) LiBaB₉O₁₅ and (b) NaBaB₉O₁₅.

3. Results and discussion

3.1. Characterization of the synthetic samples

Single X-ray diffraction indicated that the samples of LiBaB₉O₁₅ and NaBaB₉O₁₅ crystallized in the trigonal system with space group *R*3*CH*, and the unit cell dimensions are a = b = 10.967(7) Å, c = 17.060(14) Å, $\gamma = 120^{\circ}$ for LiBaB₉O₁₅ sample; a = b = 11.102(6) Å, c = 17.400(9) Å, $\gamma = 120^{\circ}$ for NaBaB₉O₁₅ sample, which are consistent with the reported unit cell values in the literature [3], respectively.

As shown in Fig. 1, the IR spectrum of NaBaB₉O₁₅ sample is very similar to that of LiBaB₉O₁₅ sample, which indicates their similar structures. Referring to the literature [5,24], we only assigned the absorption bands of FT-IR spectrum for sample LiBaB₉O₁₅ as follows: the bands at (1471, 1390 and 1277) cm⁻¹ and 906 cm⁻¹ might be asymmetric and symmetric stretching mode of B(3)–O in the triangular BO₃ unit. The bands at (1107, 1013, and 994) cm⁻¹ and (851 and 780) cm⁻¹ were the asymmetrical and symmetric stretching mode of B(4)–O in the tetrahedral BO₄ unit, respectively. The bands at (738, 689, and 643) cm⁻¹ are the out of plane bending of B(3)–O. The peaks at (583 and 519) cm⁻¹ might be bending modes of B(3)–O and B(4)–O.

Download English Version:

https://daneshyari.com/en/article/673773

Download Persian Version:

https://daneshyari.com/article/673773

Daneshyari.com