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a  b  s  t  r  a  c  t

The  study  compared  the  accuracy  of  several  model-fitting  methods  for  the  computation  of  compensation
parameters.  Two  methods  were presented  for the  model-free  computation  of the  pre-exponential  factor
dependency  using  kinetic  compensation  parameters  and  isoconversional  methods.  These  methods  give
accurate  results  for both  single  and  multi-step  kinetics.  Once  the  pre-exponential  factors  have been
evaluated  in  a model-free  way,  three  model-free  methods  were  proposed  to  compute  the  values  of  the
mathematical  function  that describes  the  reaction  mechanism  for multi-step  kinetics.  These  methods  can
be  preferred  according  to  the  type of  data  available  (i.e.  differential  or integral).  Accurate  results  were
obtained  for  both  single  and  multi-step  kinetics  using  two  sets  of  simulated  data  and  an  experimental
example.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Isoconversional methods are amongst the more reliable kinetic
methods for the treatment of thermoanalytical data, see for exam-
ple [1–10]. The major information produced by these methods is
the dependence of the apparent activation energy with the extent of
conversion, called the E˛-dependency. This dependency is impor-
tant for detecting and treating multi-step kinetics. On the other
hand, the E˛-dependencies evaluated by isoconversional methods
allow for meaningful mechanistic and kinetic analyses as well as
for reliable kinetic predictions. One of the main advantages of these
methods is that they provide a way of obtaining kinetic parameters
without any assumption on the reaction mechanism. For this rea-
son they are sometimes called “model-free”. A direct consequence
of this is that pre-exponential factors and kinetic exponents are not
computed because this would inevitably require the knowledge of
the reaction mechanism. This does not mean that it is not possi-
ble to compute these parameters using isoconversional analysis,
but their determination will require making an assumption on the
mathematical function used to describe the reaction mechanism.

Following the assumption that the reaction under study is
complex and that the true reaction mechanism is unknown, an
interesting way to compute the pre-exponential factor is to use the
so-called compensation parameters. Because it is generally possi-
ble to find a false compensation effect between activation energy
(E) and pre-exponential factor (ln A), it is often possible to establish
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a (linear) relationship between these parameters. Then, the knowl-
edge of this relationship, in association with the determination
of the E˛-dependency obtained using an isoconversional method,
gives a model-free estimation of the pre-exponential factor. Indeed,
accurate values of the pre-exponential factor (ln A˛) can be esti-
mated for single-step [11] and multi-step [12] processes from the
E˛ values obtained in a model-free way  (i.e. by an isoconversional
method), using this relationship.

The first objective of this work will be to compare the accuracy
of various methods to compute activation energy, pre-exponential
factors and compensation parameters. Then, new solutions will be
given for the model-free determination of pre-exponential factors
and of the mathematical function that describes the reaction mech-
anism. To the best of my  knowledge, there is no other extensive
study on the model-free determination of this function. Gener-
ally, the function that describes the reaction mechanism is selected
amongst several pre-existing models as the one that gives the
best fit of the data and the method is limited to single-step pro-
cesses. The aim of this study is to propose a completely different
methodology for the determination of this function for multi-step
kinetics. This function is of great interest because it reflects the
overall reaction mechanism of the transformation as measured by
thermoanalytical techniques.

2. Theoretical approaches

The general form of the basic rate equation is usually written as
[13]:

d˛

dt
= k(T)f (˛) (1)
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 ̨ is the extent of conversion, t the time, T the temperature, f(˛) is
the mathematical function that represents the reaction mechanism
and k(T) is the rate coefficient, generally called rate constant.

2.1. Dependence of the rate coefficient with temperature

The dependence of the rate coefficient with temperature is given
by the Arrhenius law [14]:

k(T) = A e−E/RT (2)

E is the activation energy, A the pre-exponential factor (in s−1) and
R the universal gas constant.

2.2. Isoconversional principle

Isoconversional methods are based on the isoconversional prin-
ciple, stating that the reaction rate at constant extent of conversion
is only a function of temperature [15]. According to Eq. (1)[

∂ ln(d˛/dt)
∂T−1

]
˛

=
[

∂ ln k(T)
∂T−1

]
˛

+
[

∂ ln f (˛)
∂T−1

]
˛

(3)

henceforth the subscript  ̨ indicates the values related to a given
extent of conversion. Within the basic assumption of isoconver-
sional methods f(˛) does not depend on T, when  ̨ is constant,
hence:[

∂ ln(d˛/dt)
∂T−1

]
˛

= −E˛

R
(4)

As seen from Eq. (4), a model-free value of the apparent activa-
tion energy E˛ can thus be estimated for each  ̨ value.

2.3. Nonisothermal isoconversional methods

2.3.1. Differential method of Friedman
From Eq. (1) we get:

ln
(

d˛

dt

)
˛,i

= ln [f (˛) A˛] − E˛

RT˛,i
(5)

This method is known as Friedman’s method [16]. Application of
this method requires the knowledge of the reaction rate (d˛/dt)˛,i
and of the temperature T˛,i corresponding to a given extent of con-
version, for the i temperature programs used. In this study, a value
of E˛ was computed for each value of  ̨ lying in between 0.01 and
0.99 with a step of 0.01. The advantages of differential methods such
as Friedman’s method are that they make no approximations and
can be applied to any temperature program. This does not hold for
usual integral methods. Nevertheless, simulations have shown that
differential isoconversional methods can sometimes reveal numer-
ical instability in regard to integral one, care must be taken if the
reaction heat varies noticeably with the temperature program [17]
and their accuracy can be limited due to baselines determination
limit for real experimental data [18].

2.3.2. Integral methods
2.3.2.1. Classical methods. Using a linear temperature program

 ̌ = dT/dt Eq. (1) is written [19,20]:

d˛

dT
= k(T)f (˛)

ˇ
(6)

and

d˛

dT
= A

ˇ
exp

(−E

RT

)
f (˛) (7)

g(˛) = A

ˇ

∫ T

0

exp
(−E

RT

)
dT (8)

which does not have an analytical solution. If E/RT is replaced by x
and integration limits transformed, Eq. (8) becomes [21]

g(˛) = AE

Rˇ

∫ ∞

0

exp(−x)
x2

dx (9)

where x = E/RT is the reduced activation energy at the temperature
T. The function p(x) can be replaced by a number of useful approx-
imations, which have been discussed by Flynn [22]. Note that Eq.
(9) assumes a constant value of E. It was shown that for strong vari-
ations of E˛ with ˛, this assumption is the main source of errors
of integral methods and explains the differences obtained between
integral and differential isoconversional methods [23]. This state-
ment has clearly shown the necessity of developing advanced
isoconversional methods taking into account for the E˛ variation
in the computational procedures. For a detailed comparison of the
accuracy of integral methods see Refs. [18,24].

2.3.2.2. Advanced isoconversional method or Vyazovkin’s method. To
overcome the drawbacks of integral methods and to take into
account for the variation of E in the computation of the temperature
integral, an advanced isoconversional method has been developed.

According to Eq. (1)

g(˛) ≡
∫ ˛

0

d˛

f (˛)
= A

∫ t

0

exp
[
− E

RT(t)

]
dt (10)

g(˛) = A J [E, Ti(t)] (11)

The E˛ value is determined as the value that minimizes the
function [25,26]

˚(E˛) =
n∑

i=1

n∑
j /=  i

J[E˛, Ti(t˛)]
J[E˛, Tj(t˛)]

(12)

where J is evaluated over small intervals to take into account for
the variation of E

J[E˛, Ti(t˛)] ≡
∫ t˛

t˛−�˛

exp
[ −E˛

RTi(t)

]
dt (13)

This method is applicable to any temperature program and uses
a numerical integration of the temperature integral. The resulting
advanced isoconversional method allows one to handle a set of
n experiments carried out under different arbitrary temperature
programs, Ti(t).

The software developed by Sbirrazzuoli [17] was used to com-
pute a value of E˛ for each value of  ̨ lying in between 0.01 and
0.99 with a step of 0.01. In this software, numerical integration is
performed using trapezoidal rule. An accurate interpolation of the
integrated  ̨ − T curves is performed using a Lagrangian algorithm
to find the time t˛,i and temperature T˛,i that correspond to a given ˛
for the i temperature programs used. The precision on the determi-
nation of the time to reach a given  ̨ value can be extended for very
fast temperature programs as was  recently done for Fast Scanning
Calorimetry (FSC) [27]. Several possibilities are proposed in this
software for the initial estimate E0 of E˛ in the non-linear proce-
dure. The first possibility is based on the assumption that ˚(E˛) can
be approximated by a quadratic parabola with an interval of varia-
tion of E˛ typically lying in between 1 and 400 kJ mol−1 as initially
proposed by Vyazovkin [25]. On the other hand, it is also possi-
ble to use the E˛ values obtained by Friedman method as an initial
estimate of E˛ or an iterative computational procedure between
extreme values (−5000 and +5000 kJ mol−1 for example). This last
procedure has been developed to be applicable to strong E˛ vari-
ations and apparent negative variations as observed in the case
of crystallization of thermoplastics (anti-Arrhenian behavior) [28].
This non-linear method (NLN Vyazovkin) was applied in this study.
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