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A B S T R A C T

Recent researches are directed towards the regional seismic risk assessment of structures based on a bridge
inventory analysis. The framework for traditional regional risk assessments consists of grouping the bridge
classes and generating fragility relationships for each bridge class. However, identifying the bridge attributes
that dictate the statistically different performances of bridges is often challenging. These attributes also vary
depending on the demand parameter under consideration. This paper suggests a multi-parameter fragility
methodology using artificial neural network to generate bridge-specific fragility curves without grouping the
bridge classes. The proposed methodology helps identify the relative importance of each uncertain parameter on
the fragility curves. Results from the case study of skewed box-girder bridges reveal that the ground motion
intensity measure, span length, and column longitudinal reinforcement ratio have a significant influence on the
seismic fragility of this bridge class.

1. Introduction

One common approach to assess the seismic vulnerability is through
the derivation of fragility curves. Fragility curves gives the likelihood
that a structure or its components will reach a certain level of damage
for a given ground motion intensity measure (IM). The usual strategy
adopted to generate bridge class fragilities is to bin the bridges that
have statistically similar performances and sample bridge classes in
each group accounting for the variation in structural, material, and
geometric attributes, and generate the fragility curves.

Numerous studies have been carried out to group bridge classes and
suggest their fragility relationships [1–9]. HAZUS [1] is the most
comprehensive document in grouping the bridge classes and suggested
fragility relationships. However, the fragility relationships suggested in
HAZUS are based on simple two-dimensional (2-D) analyses of bridges
and do not reflect the material, structural, and geometric uncertainties.
Mangalathu et al. [2] outlined the limitations of HAZUS fragilities such
as the grouping of bridge classes based on engineering judgement and
the use of capacity spectrum method to generate the fragility curves.
Mackie and Stojadinovic [3] partially addressed the limitation of
HAZUS and suggested fragility relationships for some specific bridge
classes accounting for the variation in geometric properties. Banerjee
and Shinozuka [4,5] suggested fragility relationships for bridge classes

by grouping the bridge classes based on the number of spans (single
versus multiple), bent type (single versus multiple), and skew angle
(negligible versus significant, chosen to be>30°). Ramanathan [6]
classified the bridge classes in California based on the superstructure
type, number of columns, design era, and abutment configurations, and
suggested their fragility relationships. As noted by Mangalathu et al.
[7], the above mentioned studies classified the bridge classes based on
the engineering judgment which is subjective. These authors suggested
a performance-based grouping based on a statistical technique called
analysis of covariance. However, the scope of their study was limited to
grouping bridge classes, not the generation of fragility curves. Manga-
lathu [8] suggested fragility relationships of California concrete bridges
after grouping the bridge classes based on the structural response via
the analysis of variance. This author classified the bridge classes based
on the abutment type, pier-type, number of spans, column cross-section,
span continuity, and seismic design. In all the aforementioned studies,
the fragility relationships were conditioned only on IM. However, re-
cent researches [10–13] highlighted that the fragility relationships
conditioned on a single parameter (IM) might not be enough to capture
uncertainties associated with other input parameters. The single-para-
meter fragility curves also suffer the limitation that it requires extensive
re-simulation to update the fragility curves for a new set of input
parameters.
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To mitigate the limitations of traditional single-dimensional fragi-
lity curves, recent researches [10–17] suggested multi-dimensional
fragility curves, i.e., the fragility relationships are conditioned on input
parameters including uncertain geometric, material, and structural
parameters, in addition to IM. The multi-parameter fragility curves are
generated using logistic regression on the demand-to-capacity esti-
mates. However, the multi-parameter fragility curves are generated
after an initial classification of bridges based on either engineering
judgment or statistical performance. The performance based grouping
of bridge classes is not always possible if one would like to perform the
regional risk assessment of bridges with less computational efforts. As
noted by Mangalathu [8], bridge attributes that dictate the bridge
performance vary depending on the component under consideration,
and the generation of fragility relations for the refined bridge group
accounting for all the attributes is computationally expensive.

A few researchers [18–22] applied artificial neural network (ANN)
in the field of structural engineering to estimate structural damage and
seismic fragilities. ANN is one of machine learning techniques on the
basis of a large connection of simple units called neurons, similar to
axons in human brain [23]. It consists of an input layer of neurons (or
nodes, units), hidden layers of neurons, and a final layer of output
neurons. ANN has the capability in capturing the nonlinear behavior,
and has an efficient input-out mapping. [23]. Compared to other ma-
chine learning methods such as Random Forest, ANN is robust in the
presence of noisy or missing inputs and have the adaptively to learn in
changing environment [23]. The comparison of the efficiency of ANN
with other machine learning techniques is beyond the scope of the
current study. Lagaros and Fragiadakis [18] evaluated the application
of neural network–based methodology for a rapid estimation of the
seismic demand of steel frames. Lautour and Omenzetter [19] explored
the application of ANN in evaluating damage indices of 2-D reinforced
concrete frames. Mitropoulou and Papadrakakis [20] generated fragi-
lity curves for buildings using ANN. The research by these authors
pointed out that the computation time in the traditional fragility ana-
lysis can be reduced significantly with the use of ANN. Lu and Zhang
[21] compared the fragility curve of steel buildings obtained by ANN
and finite element analysis (FEA). These authors noted that if a suffi-
cient amount of training data is available (with a set of 500 data
points), ANN can produce accurate estimates of fragilities with less
computational time compared to FEA. Pang et al. [22] simulated the
median value and standard deviation of incremental dynamic analysis
curves at various levels of IM using ANN.

This research employs ANN to generate fragility curves for bridge
classes in California. Unlike previous studies on the application of
machine learning techniques for bridge fragilities [8,10], this research
explores the use of ANN without grouping bridge classes based on skew
angle, number of spans and columns per bent. Unlike previous studies
on the application of machine learning techniques for bridge fragilities
[8,10], this research explores the use of ANN without grouping bridge
classes based on skew angle, number of spans and columns per bent. Per
Mangalathu [8], eight bridges classes with statistically different per-
formances are possible with these combinations (the number of col-
umns per bent: one versus two, abutment skewness: straight versus
skewed, the number of spans: two-span versus three-to-four-span).
Especially, skewed bridges can be classified into five different bins
based on their response: low (0–15°), medium (15–30°), high (30–45°),
very high (45–60°), and extreme (60–77°) [24]. The establishment of a
predictive equation between uncertain input (modeling) parameters
and output (structural response) parameter enable to perform the rapid
risk assessment and generation of bridge-specific fragility curves for a
set of input parameters. To examine the capability of ANN, this research
selects two-span, three-span, and four-span skewed box-girder bridges
with single-column and two-column bents and with seat abutments.
Thus, 20 (five levels of skew angle× two types of column bent× two
numbers of span) bridge classes are possible with these combinations.
The skewed bridges occupy more than 60% of the California bridge

inventory, and their risk assessment is getting considerable attention
these days [24–28]. The scope of the study is limited to seismically
designed (constructed after 1970) pre-stressed concrete box-girder
bridges with seat abutments.

2. Proposed probabilistic seismic demand models

2.1. Traditional probabilistic seismic demand models

The probabilistic seismic demand model (PSDM) is a linear regres-
sion of pairs of input (demand, D) and output (IM) variables in the log-
transformed space. Fig. 1 shows the scatter plot of the seismic demand
or response (D) of a bridge group versus the IM in the logarithmic space,
along with the probability distribution of the seismic demands. Note
that the PSDM shown in the figure is single parameterized, i.e., con-
ditioned only on IM. Per Cornell et al. [29], the PSDM can be written as

= +S a b IMln( ) ln( ) ln( )d (1)

where a and b are the regression coefficients, Sd is the median estimate
of the demand in terms of IM. The coefficients a and b are obtained by
performing a linear regression analysis on D and IM pairs in the loga-
rithmic space. Dispersion, βd|IM, is evaluated based on statistical ana-
lysis of ln(D) and ln(IM) pairs:
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where di is the demand for the ith ground motion and N is the number
of dynamic analyses.

2.2. Artificial neural network for probabilistic seismic demand models

ANN is a mathematical model inspired by the organization and
functioning of biological neurons. The data from the dynamic analyses
are split randomly in this research into a training set (70%), a valida-
tion set (15%), and a test set (15%). ANN consists of the input layer,
hidden layer, and output layer, as shown in Fig. 2. Each line connecting
neurons is associated with a weight. The output (hi) of the neuron i in
the hidden layer is
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where s() is called the activation or transfer function. N is the number of
input neurons, Vij is the weights, xj is the input value, and Ti

hid is the
threshold term of hidden neurons. The activation function used in this
research is sigmoid to introduce the nonlinearity in the model [23,30]
and is defined as
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The network is trained with the training data to minimize the error
function in predicting the demand model, by adjusting the weights

Fig. 1. Illustration of single-parameter PSDM.
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