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A B S T R A C T

The fragility curve is defined as the conditional probability of failure of a structure, or its critical components, at given
values of seismic intensity measures (IMs). The conditional probability of failure is usually computed adopting a log-
normal assumption to reduce the computational cost. In this paper, an artificial neural network (ANN) is constructed to
improve the computational efficiency for the calculation of structural outputs. The following aspects are addressed in
this paper: (a) Implementation of an efficient algorithm to select IMs as inputs of the ANN. The most relevant IMs are
selected with a forward selection approach based on semi-partial correlation coefficients; (b) quantification and in-
vestigation of the ANN prediction uncertainty computed with the delta method. It consists of an aleatory component
from the simplification of the seismic inputs and an epistemic model uncertainty from the limited size of the training
data. The aleatory component is integrated in the computation of fragility curves, whereas the epistemic component
provides the confidence intervals; (c) computation of fragility curves with Monte Carlo method and verification of the
validity of the log-normal assumption. This methodology is applied to estimate the probability of failure of an electrical
cabinet in a reactor building studied in the framework of the KARISMA benchmark.

1. Introduction

The seismic probabilistic risk assessment (SPRA) methodology has
been applied worldwide for the estimation of the seismic risk of nuclear
power plants (NPPs) [1]. In the SPRA methodology, fragility curves are
computed as conditional probabilities of failure of structures, or critical
components, for given values of a seismic intensity measure (IM), such as
the peak ground acceleration (PGA) [2]. The core damage frequency of the
plant is, then, calculated by the convolution of the fragility curves with the
hazard curves in fault tree and event tree analysis [2]. The computation of
fragility curves requires a realistic estimation of the structure performance
subject to seismic excitations via the quantification and the propagation of
uncertainties existing in earthquake ground motions, structural material
properties, etc. These uncertainties are categorized into two groups [3]:
aleatory uncertainties, which reveal the inherent randomness of variables
or stochastic processes, and epistemic uncertainties, which originate from
the lack of knowledge about the model and provide a family of confidence
interval curves for the fragility estimation.

In practice, a fragility curve is calculated as the conditional prob-
ability that the damage measure (DM) exceeds a critical threshold, for a
given seismic IM [4,5]:

= >P α P y y α( ) ( | )f crit (1)

where y is the DM, such as inter-story drift, ycrit is the failure threshold
and α represents the seismic IM. This conditional probability can be
evaluated pointwise for different α values with the Monte Carlo method
[4,6], as well as with methods based on the log-normal hypothesis
[3,7,8]. However, both methods require a few hundred heavy numer-
ical simulations with the finite element method (FEM).

One way to improve the computational efficiency consists in
building a metamodel to calibrate the statistical relation between
seismic inputs and structural outputs. In fact, it is difficult to directly
use stochastic ground motions to construct the metamodels, because the
high-dimensionality of the inputs of such metamodels requires a very
large size of training data to accurately approximate the input-output
relation [9]. An alternative is to use seismic IMs as inputs of the me-
tamodels to represent ground motions. Various functional models based
on the calibration of IMs-DM relation have been proposed [10–12].
According to these works, a nonlinear regression metamodel seems
more suitable to provide adequate nonlinearity in the IMs-DM relation.
However, with this approach, the simplification of the continuous sto-
chastic ground motion by a small set of IMs may not allow to describe
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all the random variability in the earthquake motion [13]. Therefore, it
cannot ensure the performance of the metamodels.

Some studies regarding the application of metamodels in fragility ana-
lysis have been realized recently. Most works focus on using seismic IMs to
characterize earthquake accelerations. Metamodels are constructed to cali-
brate the relation between DMs and uncertain inputs of the structural
models, including IMs and material parameters. The construction of the
metamodels is either achieved by decomposing the nonlinear input-output
relation with high-dimensional model representation (HDMR) [13,14], or
realized with polynomial regression [15–19] or other more advanced sta-
tistical tools, such as artificial neural networks (ANNs) [20–24], LASSO
regression [25], Bayesian networks [26], merging multivariate adaptive
regression splines, radial basis function network, support vector regression
[27], Kriging [9,28], etc. On the other hand, earthquake accelerations are
also used directly as inputs of the metamodel in [29] to predict structural
response time histories. The construction of the metamodel is divided into
two steps: the first step is to extract the characteristics of earthquake mo-
tions with nonlinear auto-regression; then the polynomial chaos expansion
is applied to these characteristics to construct the metamodel. DMs are
computed from the structural response time histories, and fragility curves
can be thus obtained. Although this method seems different from the clas-
sical metamodeling with IMs, the idea remains the same: the nonlinear auto-
regression serves as a tool to extract the features of earthquake motions and
past values of the structural displacement, while these features are re-
presented by the IMs in classical approaches. Besides regression methods,
classification models like logistic regression, random forests and support
vector machine are utilized in [30] to predict directly the probability of
failure from the uncertain inputs. Despite the fact that seismic fragility
analyses have been successfully performed with different types of meta-
models, the following two points are rarely discussed: (i) Systematic selec-
tion of pertinent IMs to represent seismic ground motions. (ii) Quantifica-
tion of the prediction uncertainty of the metamodels.

In this paper, a computationally efficient methodology for the appli-
cation of ANNs to characterize the IMs-DM relation is proposed, from the
selection of the most relevant IMs to the quantification of ANN prediction
uncertainties. Most existing works take subjective choices of the IMs as
inputs of metamodels according to their expertise (e.g. PGA or PGA with
other IMs). One IM is obviously not sufficient to represent the seismic
ground motion. More systematic approaches are proposed in [20,23] to
guide the selection of IMs. Different sets of IMs are selected to train ANNs
in [20] and the performances of the different sets of IMs are analyzed with
respect to their corresponding ANNs median training errors. Ferrario et al.
proposes a wrapper approach based on genetic algorithms in [23] to select
the best subset of IMs. However, these approaches can be time-consuming,
because it requires repeated trainings of the metamodel. A more efficient
feature selection method is proposed in this work.

The uncertainty in the metamodel predictions is also investigated.
The ANN prediction uncertainty is considered to be epistemic in [31] to
quantify the impact of the size of the used data. The prediction un-
certainty is determined by the bootstrap approach, in which retrainings
of ANNs are necessary, and it provides confidence intervals of fragility
curves. On the contrary, other works integrate the metamodel un-
certainty completely into P α( )f by modeling the standard deviation
(Std) of the residual with a dual metamodel (quadratic response sur-
face, HDMR or Kriging) [9,14,18,32]. The residual is sampled from a
corresponding normal distribution, and it is added to the mean struc-
tural DM predicted by the primal metamodel. With this approach, the
residual is an aleatory uncertainty, and the influence of the size of the
training data is not accounted for. In addition, the number of FEM si-
mulations required by the dual metamodel approach can be very large,
because a number of FEM simulations should be performed at every
design point with different stochastic motions to obtain the Std.
Therefore, it may not be applicable to a very complex structure such as
NPP. In this paper, a clearer insight of the ANN prediction uncertainty
computed with the delta method is provided: it consists of an aleatory
component from the simplification of the seismic inputs and an

epistemic uncertainty due to the paucity of the training data. The
former is considered in the computation of P α( )f , whereas the latter is
used in the estimation of confidence intervals.

Among various types of metamodels, ANNs are chosen due to their
adequate nonlinearity and their excellent universal approximation cap-
ability for continuous bounded functions [33,34] (e.g. compared to poly-
nomial response surfaces). Firstly, rather than a classification model like a
SVM classifier, which returns only binary failed or survived information for
the conditions of structures, an ANN regression model provides predictive
structural responses and offers more flexibility for the fragility analysis.
Furthermore, the applicability of the ANN does not depend on the prob-
ability distribution of input data, so it is a versatile model with a very wide
domain of application. Finally, a metamodel based on ANN is a regression
rather than an interpolation model. If representative seismic IMs are used
to characterize the continuous seismic motions as inputs of the metamodel,
the IMs cannot fully represent the seismic randomness and this introduces a
residual term. However, an interpolation model predicts identical outputs
as the original ground motions for the training data: it may thus overfit the
input-output relation. This point is addressed in detail in this work.

This paper is organized as follows: in the next section, the basis about
simulation-based fragility analysis methods is briefly recalled. Section 3
presents the methodology for ANN-based fragility estimation. Feature se-
lection techniques are highlighted in this methodology to select the most
relevant seismic IMs for a better accuracy of the metamodels. ANN pre-
diction uncertainties are separated into aleatory and epistemic compo-
nents. These uncertainties are considered in the computation of the fra-
gility curves and the related confidence intervals. An application of the
proposed methodology to the Kashiwazaki-Kariwa NPP is demonstrated in
Section 4 in the context of the KARISMA benchmark [35]. Conclusions are
finally provided in Section 5. Only the ground motion record-to-record
variability is considered in this paper, to better study the impact of the
ANN prediction uncertainties on the fragility curves. In addition, without
specification, the metamodel mentioned in this paper represents regres-
sion or interpolation models, instead of binary classification models.

2. Simulation-based fragility analysis

A simulation-based fragility analysis is composed of 3 main steps:

1. Structure modeling. This step consists in establishing a set of
mathematical partial differential equations to describe the me-
chanical behavior of the underlying model.

2. Numerical simulation and calculation of the DM. Numerical simu-
lations are performed to propagate the uncertainties and to compute
the DM. FEM is the most widely used numerical resolution method.

3. Computation of the conditional probability of failure of the structure.
This step is realized by applying a statistical analysis to the IM-DM data
cloud (α y, ) computed from the numerical simulation results.

In this section, the computation of the DM and the calculation of the
conditional probability of failure are further discussed. The concept of
the residual of the metamodel is introduced and emphasized. This
concept will be later used throughout the next parts of the paper. Two
commonly used methods for the computation of the conditional prob-
ability are presented. These two methods will be applied to calculate
the fragility curves in an industrial complex case study in this paper.

2.1. Computation of the damage measure

2.1.1. Mechanical model
The mechanical model to compute the DM of a structure or a critical

component can be described as

= ay f t( ( )) (2)

where a t( ) represents the seismic ground acceleration. The resolution
of Eq. (2) is usually time-consuming, especially when the structural
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