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A B S T R A C T

In this paper, a continuum model is proposed for static and dynamic analyses of a three-span suspension bridge
with three-dimensionally curved main cables. To obtain equations of motion for this model, coupled differential
equations are derived for vertical displacements of a main cable and a girder as well as lateral displacements of a
main cable subjected to external loads. A compatibility equation of a three-dimensionally curved cable is also
derived. Utilizing the Galerkin method, the equations of motion are obtained in matrix form. A case study bridge
is used to verify the continuum model against a finite element model. Verification results show that, for dis-
tributed static loads on the girder and temperature changes in the main cable and the hangers and for dynamic
moving loads on the girder, the continuum model can accurately determine static and dynamic responses,
namely displacements, velocities, accelerations, bending moments, and shear forces of the girder and additional
horizontal forces in the main cable.

1. Introduction

A suspension bridge can be analyzed by two types of models: finite
element models and continuum models. Finite element models have
many hundreds of finite elements which are used to discretize members
such as a cable and a girder in the bridge. These finite element models
have high accuracy and generality, but require time-consuming mod-
elling procedures including initial equilibrium state analysis and re-
quire high computational resources because of their many thousands of
degrees of freedom. In contrast, continuum models based on the de-
flection theory consider each span of the bridge as a continuum and do
not need discretization which is used in finite element models. These
continuum models do not require the initial analysis and require much
fewer degrees of freedom because of their simple governing equations.
Therefore, these models can be useful during preliminary analysis to
determine bridge properties from extensive parametric analyses and to
independently verify complex finite element models.

Continuum models have been widely studied by many researchers
for free vertical or torsional analysis [1–11] and for static analysis
[12–21] of suspension bridges. In addition, continuum models have
been adopted for the analysis of suspension bridges under dynamic
loads such as moving loads [22–26], seismic loads [27,28], and com-
bined loads [29–32].

Main cables in suspension bridges generally are of two-dimensional

shape, comprising curves in vertical planes. However, they sometimes
are of three-dimensional shape, with curves in both vertical and hor-
izontal planes (Fig. 1). For example, the San Francisco Bay Bridge in the
United States and the Yeongjong Bridge in Korea have three-di-
mensionally curved main cables. Suspension bridges with three-di-
mensionally curved main cables are considered more beautiful and
have greater lateral stability [33–35]. Studies on this bridge type have
typically focused on initial equilibrium state analysis [33,34,36] or
construction stage analysis [37,38]. However, because of its structural
complexity, finite element models for this bridge type require a more
complicated modelling procedure and greater computational resources
relative to conventional bridges with two-dimensional main cables
[33,34,36–38]. Therefore, it is necessary to develop a continuum model
for a bridge with three-dimensionally curved main cables.

In this paper, a continuum model is proposed for static and dynamic
analyses of a three-span earth-anchored suspension bridge with three-
dimensionally curved main cables. To obtain equations of motion for
this model that can consider extensible hangers, coupled differential
equations are derived for vertical displacements of a main cable and a
girder as well as lateral displacements of a main cable subjected to
external loads. A compatibility equation for a three-dimensionally
curved cable is also derived. Utilizing the Galerkin method, the equa-
tions of motion are obtained in matrix form. A case study bridge is used
to verify the continuum model against a finite element model.
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2. Single-span suspended girder with three-dimensional curved
main cables

2.1. Basic assumptions and differential equations

Fig. 2(a) shows a single-span suspended girder with three-di-
mensionally curved main cables and inclined hangers, where x , y, and z
are the coordinates for longitudinal, horizontal, and vertical axes, re-
spectively. A continuum model for this cable–girder system proposed in
this paper is based on the following eight assumptions. (1) The dead
load is uniform and carried only by the cable; thus, the girder has no
vertical displacement under the dead load. (2) The cable shape is
parabolic under the uniform dead load. (3) The hangers are con-
tinuously distributed along the girder. (4) The hangers are initially
parallel to the −y z plane and remain parallel during vibration. (5) The

displacements of the cable and the girder are small so that the addi-
tional horizontal force in the cable caused by these displacements is
small in comparison with the horizontal force under the dead load. (6)
The hangers are massless and extensible. (7) Vertical external loads are
applied to the girder’s centroid and to the two cables symmetrically
with respect to the −x z plane. (8) The mass of the cable is small
compared to that of the girder.

The first five assumptions above are usually adopted in conven-
tional continuum models, although Arena and Lacarbonara [39] ex-
cluded the second, forth, and fifth assumptions in their model. The fifth
assumption ensures that the continuum model has linear behaviors. The
description of the extensible hangers in the sixth assumption allows for
elongations of the hangers between the cable and the girder so that the
displacement of the girder is not equal to that of the cable. The seventh
assumption leads the girder to only have vertical displacements and
also leads the displacements of the two cables to be symmetric with
respect to the −x z plane of the bridge. The eighth assumption ensures
that the cable and the hangers remain in an identical inclined plane and
thus ensures that the angle between the horizontal plane and the in-
clined plane is constant along the bridge.

Fig. 2(b) shows cross-sectional views of the initial and deformed
shapes of the cable–girder system under consideration. Since the se-
venth assumption leads to symmetric displacements of the cables with
respect to the −x z plane, only half of the section is considered. In
Fig. 2(b), o is the inclined axis in the plane of the cable and the hangers;
wc and wg are the vertical displacements of the cable and girder, re-
spectively; vc is the lateral displacement of the cable; lhz, lhy, and lho are
the vertical, horizontal, and inclined lengths of the hangers; and θ and
′θ are the slope angles of the hangers in the initial and deformed shapes.
The angle θ also represents the angle between the horizontal plane and
the inclined plane of the cable and the hangers, which is assumed to be
constant along the bridge.

Fig. 3 shows the load conditions of the cable, hangers, and girder in
the vertical and horizontal planes. In Fig. 3, mc and mg are the uniform
masses of the cable and the girder per unit length along the x -axis,
respectively; pc and pg are the external loads on the cable and the girder;
g is the gravitational acceleration; Ec and Ac are the elastic modulus
and the cross-sectional area of the cable; Eh and Ah are the elastic
modulus and the cross-sectional area of the hangers; Eg and Ig are the
elastic modulus and the moment of inertia of the girder section; L is the

Fig. 1. Suspension bridge with three-dimensionally curved main cables: (a) three-di-
mensional, (b) front, and (c) top views.
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Fig. 2. (a) Single-span suspended girder with three-dimensionally curved main cables and inclined hangers, and (b) cross-sectional view of its initial and deformed shapes.
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