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A B S T R A C T

The use of elastic analysis is prevalent in the design of building structures even under loading conditions where
inelasticity would be expected. Accordingly, geometric and material properties used in the elastic analyses must
be carefully selected to maintain accuracy. Steel-concrete composite columns experience different forms of in-
elasticity. Concrete cracking is the source of much of the inelasticity and occurs at relatively low levels of load,
but partial yielding of the steel, slip between concrete and steel, and concrete crushing also contribute to losses
in stiffness. In this paper, the behavior of composite columns is characterized at the cross section and member
levels through comparisons between inelastic and elastic analyses. Then, through a broad parametric study,
specific practical design recommendations are developed for the elastic flexural rigidity of composite columns
for the determination of lateral drifts under service loads. The recommendations in this paper provide simple and
robust values for the stiffness of composite columns to be used for drift computations involving lateral loads.

1. Introduction

Building structures are typically designed with the expectation that
they will experience inelasticity during their design life. Different forms
of inelastic behavior will occur at different levels of loading. In steel-
concrete composite members, concrete cracking may occur under re-
latively low loads, slip may occur at moderate loads, and steel yielding
and concrete crushing may occur relatively high loads. Despite the in-
creasing use of inelastic analysis, which can track this behavior ex-
plicitly, elastic analysis remains prevalent in design. Thus, the expected
inelasticity must be accounted for implicitly in the elastic analysis. One
way of accomplishing this is through appropriate modifications of the
geometric and material properties assumed in the analysis.

In elastic analyses with frame elements, the behavior of cross sec-
tions is represented by elastic rigidities which define the stiffness of
cross sections in various modes of deformation, for example the axial
stiffness, EA, the flexural stiffness, EI, the shear stiffness, GA, and the
torsional stiffness, GJ. For moment frame systems, the dominant mode
of deformation is typically bending, thus EI is of prime importance.

Elastic analyses are used for many different purposes in the design
of building structures, and the appropriate elastic geometric and ma-
terial section properties may differ depending on the purpose of the
analysis. For strength design, appropriate elastic section properties ty-
pically reflect the level of inelasticity at the “ultimate” limit state.

Alternatively, when computing deflections due to wind loading for
story drift checks, appropriate elastic section properties typically reflect
the level of inelasticity at a “service loading” level. The elastic section
properties used for service loading level design checks are often greater
than those for the determination of required strengths. For example, in
the ACI Code, the moment of inertia is permitted to be increased by a
factor of 1.4 for service load analysis [2] and in the AISC Specification,
the stiffness reductions associated with the direct analysis method are
not intended for determining deflections [3].

While a variety of potential uses for elastic flexural rigidity exist,
they are not all equally common in practice. All structures are evaluated
for strength which typically includes using an elastic flexural rigidity
within design equations to determine the compressive strength of col-
umns and within a second-order analysis to determine required
strengths. The appropriate effective flexural rigidity for these uses was
the subject of recent research and changes to code provisions [3,8]. The
evaluation of serviceability drift limits is equally important, especially
for moment frames where drift limitations may control the design.
However, less attention has been paid to the appropriate effective
flexural rigidity for this use. Another common use of the elastic flexural
rigidity is within an Eigenvalue analysis to compute fundamental per-
iods for the determination of seismic loads as was investigated by Perea
et al. [20]. An example of a less common use of the elastic flexural
rigidity is to define the elastic component of a concentrated plasticity
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beam element or other beam element where geometric and material
nonlinearity are handled distinctly [22].

In this paper, the stiffness of steel-concrete composite columns is
tracked first at the cross-section level then at the member level to
provide accurate and practical guidance on the elastic flexural rigidity
of such members for the specific purpose of determination of lateral
drifts under service loads. Both concrete-filled steel tube (CFT, Fig. 1a
and b) and encased or steel-reinforced concrete (SRC, Fig. 1c) columns
are investigated. This research focuses on short-term behavior, such as
deformations caused by wind loading, and thus the effects of creep and
shrinkage are not included.

2. Literature review

Structural steel has a relatively high proportional limit, thus, the use
of the gross section properties and modulus of elasticity is widely
considered safe and accurate for analysis at service loads. For de-
termination of required strengths per the direct analysis method, a re-
duction of 0.8 is applied to all stiffness of all members that contribute to
the lateral stability of the structure with a further reduction of τb on EI
(τb is a factor that varies between 0 and 1 and depends on the axial
compression within the member) [3]. These reductions account for the
partial yielding (accentuated by residual stresses) that occurs in mem-
bers under combined bending and axial load.

Concrete cracks in tension and has a relatively low proportional
limit in compression. Several different recommendations and options
for the flexural rigidity are given in the ACI Code [2] depending on the
use of the value. A relatively low flexural rigidity is used to determine
the moment magnification of nonsway frames. Relatively higher flex-
ural rigidities are permitted for use in elastic analyses to determine
required strengths or lateral deflections at ultimate loads. Two primary
options are given. For the simple option, the flexural rigidity for col-
umns is recommended as 70% of the product of the modulus of elas-
ticity of the concrete and the gross moment of inertia (Eq. (1)) based on
the work of MacGregor and Hage [15]. The more complex expression
for the flexural rigidity takes into account the effects of load and steel
ratio (Eq. (2)). These equations were developed by Khuntia and Ghosh

[11,12] based on parametric computational studies on reinforced con-
crete cross sections. To determine lateral deflections at service loads,
the ACI Code [2] permits the use of Eq. (1) or (2) multiplied by 1.4.
Other studies have also focused on the flexural rigidity of reinforced
concrete members [16,9,4,13].
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where Ec=modulus of elasticity of concrete, Ig=gross moment of
inertia of the cross section, Asr=area of steel reinforcing, Ag=gross
area of the cross section, Mu=required bending moment,
Pu=required axial compression, H=section depth, and Pno=cross-
sectional axial capacity.

A variety of approaches and relations have been proposed to eval-
uate the elastic rigidity of composite members. The different re-
commendations are not necessarily comparable since they were often
developed with different objectives and for different purposes (e.g.,
determination of axial strength, assessment of deformations, and use in
nonlinear finite element formulations).

The effective flexural rigidity, EIeff, given in the AISC Specification
[3] is intended for use within a column curve approach to compute the
axial compressive strength of composite columns. Different expressions
are provided for this rigidity for SRC (Eq. (3)) and CFT (Eq. (4))
members. The effective flexural rigidity is also used, with reductions,
for determining required strengths within the direct analysis method
(EIDA, Eq. (5)). These expressions are based on computation analyses of
small frames as well as an evaluation of column and beam-column
experimental results [8]. The expressions are new to the 2016 AISC
Specification; previous expressions were similar in form and based solely
on evaluations of experimental results [14].
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where Es=modulus of elasticity of steel, Is=moment of inertia of the
steel shape, Isr=moment of inertia of the reinforcing, Ic=moment of
inertia of the concrete, and As=area of the steel shape.

In the ACI Code [2], composite columns are treated much the same
as reinforced concrete columns. A slightly different formula is re-
commended for the determination of the moment magnification for
nonsway frames, but, otherwise no special formulas are given.

In Eurocode 4 [5], two equations for the effective flexural rigidity
are provided. The first, (EI)eff (Eq. (6)), is for the determination of the
member slenderness to be used within a column curve to determine
axial strength. The second, (EI)eff,II (Eq. (7)), is to be used within an
elastic analysis to determine required strengths. For both equations, the
effective rigidity is taken as the sum of the individual components with
factors reducing the concrete contribution. For (EI)eff,II, an additional
reduction factor is applied to the summation.
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Other recommendations can be found in the literature. Schiller et al.
[22] summarized published elastic rigidity recommendations for
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Fig. 1. Composite cross sections.
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