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A B S T R A C T

In the present paper a Probability Density Evolution formulation is proposed for the limit analysis of stochastic
systems, which can accurately and efficiently evaluate the effect the system’s random parameters have on its
nonlinear and limit response. The proposed formulation of the classic Probability Density Evolution Method
reduces the corresponding Generalized Density Evolution equations, which are partial differential equations, to a
system of ordinary differential equations, that can be efficiently solved with the method of characteristics. With
this reformulation, the cumulative distribution function of the critical load of the structure can be accurately and
efficiently evaluated. The estimation of stochastic limit buckling loads of imperfection sensitive structures is a
natural extension of this method. In addition, a methodology is put forward for the estimation of the prob-
abilistic characteristics of the full load-displacement curve for a stochastic nonlinear system in the context of
Newton-Raphson incremental-iterative schemes. The main advantage of the proposed approaches is that they
allow for a quantification of the effect of uncertainties on the structural capacity, with only a small number of
deterministic analyses compared to Monte Carlo simulation. The applicability and validity of the proposed
methodology for limit and nonlinear structural analysis is verified through extensive numerical investigations.

1. Introduction

In an effort to achieve more reliable representations in real-life
engineering problems, researchers quickly realized that this could not
be accomplished without taking into account the role of uncertainties in
the system under consideration. This notion led to the development of
the stochastic finite element method (SFEM) and in the past few years
significant advances have been accomplished in its application to
structural engineering problems. The most eminent and widely used
methods developed to treat randomness in such problems could be
broadly classified into the following categories: (a) Monte Carlo simu-
lation techniques [1] and its variants (importance sampling [2], subset
simulation [3], line sampling [4]), (b) random perturbation techniques
[5], (c) the spectral stochastic finite element method [6] and (d) path
integral techniques [7,8]. Despite the progress being made, the appli-
cation of these methods in large scale realistic problems is still limited,
either due to prohibitive computational costs or due to their inability to
deal with structures with complex behavior. Recently, a new approach
was added to the family of stochastic methods, that is, the Probability
Density Evolution Method (PDEM) [9]. This method possesses the wide
range of applicability of the Monte Carlo methods, whereas, in many
cases, requires a considerably smaller number of deterministic analyses.

Although mainly employed in dynamic systems [10,11], a reformula-
tion of the method was proposed in [12] to also treat static systems.

On the other hand, a valuable tool in structural engineering for
determining the capacity of a structure beyond its elastic region is the
well-known limit analysis. The two main approaches when one wants to
perform a limit analysis, are the mathematical programming based
approaches [13–16] and the displacement based direct stiffness
method, which is utilized in most commercial programs. Nevertheless,
in practice it quickly became evident that, even with the most elaborate
and sophisticated deterministic models, the results between the com-
puter analyses and the experiments did not fully agree [17,18]. The
reason for this lies in the key role, that imperfections in geometry,
material and section properties [19] play in the actual behaviour of the
structure. At this point, the role of random parameters in a structural
system and their influence on its inelastic collapse limit load becomes
evident and this fact necessitates the extension of limit analysis to
stochastic systems for more realistic and accurate models, especially in
the framework of system reliability analysis. Towards this direction,
many approaches can be found in the literature including the direct
Monte Carlo simulation [20], the β-unzipping method [21], bounding
techniques [22] and analytical stochastic response analysis [23]. In this
framework, stochastic buckling analysis has also received great
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attention. The existence of random imperfections in almost every real
structure leads to a wide scattering of the buckling loads and the ap-
proaches to estimate their variability include either the assumption of
imperfections with variable amplitude in the form of the critical ei-
genmode for the perfect structure [24,25], or the more sophisticated
representation of the imperfections as random fields [26–29]. In [30],
random fields were used to represent the initial out-of-straightness of
steel columns and evaluate the stochastic buckling trajectories.

In the present paper a Probability Density Evolution formulation is
proposed for the limit analysis of stochastic systems, which can accu-
rately and efficiently evaluate the effect the system’s random para-
meters have on its nonlinear and limit response. The proposed for-
mulation of the classic Probability Density Evolution Method reduces
the corresponding Generalized Density Evolution equations (GDEEs),
which are partial differential equations, to a system of ordinary dif-
ferential equations, that can be efficiently solved with the method of
characteristics [31,32]. With this reformulation, the cumulative dis-
tribution function of the critical load of the structure can be accurately
and efficiently evaluated. The estimation of stochastic limit buckling
loads of imperfection sensitive structures is a natural extension of this
method. In addition, a methodology is put forward for the estimation of
the probabilistic characteristics of the full load-displacement curve for a
stochastic nonlinear system in the context of Newton-Raphson incre-
mental-iterative schemes. The main advantage of the proposed ap-
proaches is that they allow for a quantification of the effect of un-
certainties on the structural capacity, with only a small number of
deterministic analyses compared to a Monte Carlo simulation. The ap-
plicability and validity of the proposed methodology for limit and
nonlinear structural analysis is verified through extensive numerical
investigations.

The remaining of this paper is organized as follows: In Section 2, the
formulation of the PDEM in static cases is outlined. In Section 3, the
partitioning of the probability-assigned space, as well as the Karhunen-
Loève expansion for random fields are described. Section 4 presents the
implementation aspects of applying the PDEM in the estimation of
stochastic limit loads. In Section 5, an approach is put forward that
enables the coupling between PDEM and Newton-Raphson solution
algorithms. Lastly, in Section 6, the proposed methodology is applied in
test cases and the results obtained are critically assessed and discussed
further.

2. Probability Density Evolution Method for static problems

PDEM was introduced by Li and Chen [9] and offers a relatively new
approach in solving the stochastic conservation equations, that govern
the flow of probability in a stochastic system. Such a solution would
give the complete probabilistic information about the system under
consideration rather than the second order statistics. This method takes
advantage of the principle of preservation of probability, but unlike the
other probability density evolution equations (Liouville equation,
Fokker-Planck equation), it is viewed from the random event perspec-
tive, leading to a family of GDEEs, which are numerically tractable.

These concepts were applied in [12], where a reformulation of the
method was proposed for stochastic static system. According to this
reformulation the equation of equilibrium of a multi-degree-of freedom
system with random system parameters is considered as

=θ θK u F( )· ( ) (1)

where K is the system’s stiffness matrix, u stands for the displacement
vector and F is the external force vector; θ is the vector of all random
parameters involved in the physical properties of the system.

In Fig. 1, a generic element is depicted, where the loading q and the
bending stiffness EI are assumed random.

As a consequence, the displacement u at each position x of the
element will also be random. Moreover, the parameter θ can also be
seen as the stochastic input for this system and since no other source of

randomness enters or exits the system along the position x , then the
probability is a conserved quantity. This property is mathematically
expressed in the following equation
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×

θ θD
Dx

p u x u( , , ) d d 0θuΩ Ωx θ (2)

where D
Dx

is the material derivative with respect to the position
×x,Ω Ωx θ is the product space of the physical and random space Ωx and

Ωθ, respectively, and p θu denotes the joint probability density function
(pdf) of θu x( ( ), ). After some mathematical manipulations, which shall
be omitted here for the sake of brevity (the reader is referred to [33] for
more details), Eq. (2) can be recast for any arbitrary ⊆Ω Ωθθ in the
following form
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By exploiting further the fact that Eq. (3) holds for any ⊆Ω Ωθθ , we
could partition Ωθ into subdomains Ωq’ = …s q n, 1,2, , pt, such that
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and since Eq. (4) is valid for any Ωq, and by making the assumption that
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Eqs. (6) are the well-known GDEEs. In order to solve these pde’s, the
initial conditions for the problem are required, which usually are of the
form

= −=θp u x δ u u p( , , ) ( )θu x x q00 (7)

where

∫= θp p dθ( )θq Ωq (8)

These initial conditions can be found at positions, where there exist
boundary conditions in the physical problem. For instance, if u at =x x0
is fixed, then = = …u x θ θ q n( , ) 0 for all with 1, ,q q pt0 . In terms of prob-
ability, this observation translates to the fact that, all probability there
should be concentrated at the event of zero displacement. Also, du θ x

dx
( , )q

in Eq. (6) is the flux term, which can be evaluated directly, by solving
the governing Eq. (1) for the random event θq.

Next, if we denote
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then, the solution is
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The numerical procedure to solve (2) is summarized in the following
steps:

Fig. 1. Generic element with the randomness involved in the loading and the system
parameters.
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