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A B S T R A C T

A systematic dynamic and structural integrity analysis of an elevator system, under real dynamic load condi-
tions, is presented in this work. The proposed method constitutes an important innovation for the field “analysis
and design optimization of elevator systems”. Current elevator design requirements lead to development of
lightweight structures which often are of higher complexity. In order to achieve design optimization of these
systems, it is important to develop an accurate Finite Element Analysis methodology, to support their precise
numerical modeling, also in the worst loading case for their operation. One of the worst loading cases for an
elevator system is when the elevator falls free and the safety gear is activated until the elevator stops. Each
elevator, when installed in a building, is tested in this loading scenario. This means, that should be designed to
withstand in these loads and not to have any damage after this test. One of the special features of this paper is
that the study was performed on a complete industrial elevator system, including all details/complexities of a
commercial system. Comparison of the numerical and experimental data verifies that the proposed “mixed
computational-experimental” analysis method is quite reliable, concluding application/verification of the
method on a complete industrial elevator system.

1. Introduction

Ever evolving elevator design requirements frequently require im-
provements and modifications of either specific mechanical compo-
nents or even of entire structures. In order to achieve design optimi-
zation of these systems, it is important to develop an accurate Finite
Element Analysis methodology, to support their precise numerical
modeling, also in the worst loading case for their operation. The worst
loading case for an elevator system is when the elevator falls free and
the safety gears are activated until the elevator stops. The synchronized
activation of the safety gears is a very important issue. However, be-
cause of the inertia of the activation system and of manufacturing tol-
erances deferred activation of safety gears could happen. To study the
effects of this on the elevator, the main finite element analysis used in
the industry is static structural analysis. This analysis makes a series of
assumptions/simplifications, resulting to a simulation not sufficiently
accurate for the present problem. The case of the non-synchronous
activation of the safety gears cannot be simulated at all with a static
analysis. So, to solve these modeling issues, one reasonable approach is
to develop an accurate mixed computational-experimental procedure,
to simulate accurately the dynamic behavior. This is the main research

issue addressed by the present work.
The equations of motion of a large and geometrically complex

structural system are set up by applying classical finite element tech-
niques. As the order/complexity of these models increases, existing
numerical and experimental methodologies for determining their dy-
namic response become inefficient. To cure this problem, appropriate
substructuring methods in either the time or the frequency domain have
been developed and are usually employed [1–5,19–21]. A basic in-
gredient of these methods is the determination of sets of component
modes allowing a drastic reduction in the numerical dimension of the
system examined [1,2,6,7]. In addition, there are many occasions in
practice where exact technical characteristics, including those related
to strongly nonlinear action of some structural components, are not
known. In such cases, appropriate mixed methodologies, involving
generation and processing of information related to the system dynamic
response by a combination of numerical and experimental techniques,
are applied. Specifically, some of the components of the structure are
modelled numerically while the remaining components are modelled
experimentally [8,9,11]. Also, in structures that are mostly subjected to
fatigue, it is necessary to develop a high fidelity finite element model,
based on which the fault locations and the lifetime of the construction
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can be accurately determined. In such cases, appropriate finite element
model updating methods are applied combining a substructuring ap-
proach with a near real-time system identification scheme, namely the
Unscented Kalman Filter (UKF) [13–15,22–24]. The former aims at
isolating and locally updating individual structural subsystems of a
large-scale structure, while the latter, in contrast to other alternatives
(e.g. the Extended Kalman Filter), offers a number of advantages in
treating nonlinear systems, such as a derivative free calculation and a
capacity for handling higher order nonlinearities.

The main objective of the present work is to detail an appropriate
mixed numerical-experimental methodology to accurately predict dy-
namic response and identify critical points in an elevator system [10].
The special feature of this research is that this study is performed on a
real industrial elevator system, characterized by a quite complex
structure. The complete elevator system examined consists of three
main parts. The first part includes all the supporting parts, like the
guide rails, hydraulic piston, wire ropes, etc. Usually, no information
about the specific dynamic characteristics of this part is available. The
second part includes the chassis of the elevator, while the third part
includes the cabin which is mounted onto the chassis. For the chassis
and the cabin, a detailed finite element model is developed, leading
most-often to an excessive number of degrees of freedom. Therefore, a
mixed modeling method is employed for solving and investigating the
specific problem. In this way, complications arising from inadequate
information on the parameters of the supporting components are
avoided. Additionally, the present methodology includes a drastic re-
duction of the original degrees of freedom of the systems examined.

The method developed in the present work can be used to determine
the dynamic behavior of the elevator main substructures (chassis and
cabin). Also, this leads to an accurate identification of points where
critical (largest) stresses appear. This is done by applying a numerical
method for determining the equations of motion for the chassis and
cabin, while the dynamic characteristics of the remaining components
are taken into account through the application of appropriate experi-
mental measurements.

The procedure proposed for solving and analyzing this specific
problem includes the following steps. First, the chassis and the cabin of
the elevator are modelled by discretizing them geometrically according
to the FE method. In order to verify the accuracy of the FE model and
also identify the braking forces acting on the system, one first examines
only the elevator chassis. The initial FE model of the chassis is updated
and validated through an experimental investigation of its dynamic
response when the elevator stops using instantaneous or progressive
safety gear. These experimental tests are performed under real oper-
ating conditions, using an experimental device that was designed ex-
actly for this purpose and aimed at recording the acceleration time
histories at the connection points of the chassis with the safety gear and
at other locations used as reference points. The acceleration time his-
tories at the connection points are subsequently used as base excitation
for the FE model of the chassis and the corresponding stresses devel-
oped are evaluated. On the basis of these numerical results, the critical
points of the chassis are specified, as those corresponding to larger
stresses. In order to test the reliability of the proposed method, strain
gauges are placed at the critical points of the chassis and measurements
are carried out, under similar dynamic load conditions, in order to
experimentally verify the stresses calculated above.

The organization of this paper is as follows. In the following section,
an appropriate methodology is proposed for analyzing the stress in a
chassis-cabin of a complete industrial elevator system in emergency
cases, based on “dimensional reduction” and on using experiments to
specify a base excitation for a simplified FE model of the complete
system. Then, in the third section, the effectiveness and accuracy of this
methodology is examined. Here, the reliability of the methodology is
tested first in detail on the elevator chassis with the platform of the
cabin and next on the full elevator system (chassis and cabin). The
paper concludes with a summary of the obtained results.

2. Outline of the proposed mixed computational-experimental
methodology

The equations of motion of mechanical systems with complex geo-
metry are commonly set up by applying finite element techniques.
Quite frequently, a systematic investigation of the dynamics of a large
scale mechanical structure leads to models involving an excessive
number of degrees of freedom. Therefore, a computationally efficient
solution requires application of methodologies reducing the numerical
dimension of the original model [1–5,7]. Next, the basic steps of a time
domain reduction method are briefly presented.

For simplicity, consider a mechanical system consisting of two
subsystems, say A and B. Moreover, let the equations of motion for
subsystem A be derived from the following classical equation

̂ ̂ ̂ ̂+ + =M x C x K x f¨ ̇A A A A A A A (1)

where ̂MA, ̂CA and ̂KA are, respectively, the mass, damping and stiffness
matrix of the subsystem A, with the vector ̂f t( )A representing the ex-
ternal forcing. For a typical model, the number of these equations may
be quite large. However, for a given level of forcing frequencies, it is
possible to reduce significantly the number of the original degrees of
freedom, without sacrificing the accuracy in the numerical results, by
applying standard component mode synthesis methods [1,12]. This can
be achieved through an approximate Ritz transformation of the form

=x qΨA A A (2)

The transformation matrix ΨA includes an appropriately chosen set
of the lowest frequency normal modes of component A, corresponding
to support-free conditions [1,7]. The number of these modes depends
on the accuracy required in the response frequency range examined.
Consequently, the matrix ΨA is completed by a set of static correction
modes of component A, MacNeal’s Method [2,7,18]. Employing this
transformation (2), the original set of equations (1) can be replaced by
this considerably smaller set of equations, expressed in terms of the new
generalized coordinates qA:

+ + =M q C q K q f¨ ̇A A A A A A A (3)

where
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Moreover, the set of unknowns can be split in the form

=q p x( )A A
T

b
T T

where pA includes coordinates related to the response of internal de-
grees of freedom of component A, while xb includes the boundary
points of component A with component B. Next, similar sets of equa-
tions of motion are obtained for component B. Namely, the equations of
motion are first set up in the form

+ + =M q C q K q f¨ ̇B B B B B B B (4)

with coordinates

=q p x( )B B
T

b
T T

Then, a proper combination of equations (3) and (4) leads to the
equations of motion of the composite system in the classical form

+ + =Mq Cq Kq f¨ ̇ (5)

with coordinates

=q p p x( ) .A
T

B
T

b
T T

The stiffness matrix of the composite system can be obtained by
considering the total potential energy of the system. Likewise, the mass
matrix of the composite system is obtained by considering the corre-
sponding kinetic energy, while the forcing vector is determined by
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