
Contents lists available at ScienceDirect

Engineering Structures

journal homepage: www.elsevier.com/locate/engstruct

Numerical aspects of determination of natural frequencies of a power
transmission line cable equipped with in-line fittings

Hinko Wolf⁎, Sanja Singer, Dragan Pustaić1, Neven Alujević
University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Ivana Lučića 5, 10000 Zagreb, Croatia

A R T I C L E I N F O

Keywords:
Aeolian vibrations
Transmission line
SVD
Singularity detection

A B S T R A C T

In the analysis of Aeolian vibration response of electric power transmission lines, the modified energy balance
method (MEBM) is often used. The first and crucial step in applying the MEBM is an accurate determination of
the natural frequencies and modes of the system, or in other words, the eigenvalues and eigenvectors of the
system matrix. In this paper an efficient numerical procedure that searches for frequency parameters s that make
the system matrix J s( ) of transmission line cable singular is considered. A realistic case where the cable is
equipped with in-line fittings such as Stockbridge vibration dampers and aircraft warning spheres is taken into
account. It is shown that the rank of the considered system matrix J s( ) is either full, or the full rank minus one.
From a numerical point of view, this is an important property of the system matrix since multiple eigenvalues
without a full set of eigenvectors, i.e., with Jordan blocks of order greater than 1, are very sensitive to small
perturbations. The developed numerical procedure, which is easily parallelizable, consists of the hybrid mini-
mization method paired with the Singular Value Decomposition (SVD) for the detection of the singularity of the
matrix. Presented numerical examples illustrate advantages of the numerical procedure proposed.

1. Introduction

Intense vibrations can be observed in electric overhead transmission
lines, submarine periscopes, tall chimneys and other similar objects,
when certain conditions are fulfilled regarding the interaction of the
fluid flow and the dynamics of the structure. For example, if one con-
siders a fluid flowing past a cylinder, a regular pattern of alternating
vortices, the so-called von Kármán vortices, can occur. These vortices
change between clockwise and counter-clockwise rotation direction
and produce harmonically varying lift forces on the cylinder perpen-
dicular to the fluid velocity. If the Reynolds number (Re) spans from 60
to 5000, experimental data confirms that a strong regular vortex
shedding appears. Vortex shedding means that vortices are created at
the back of the body and detach periodically from either side of the
body. If the Reynolds number is equal or greater than 1000, we can
write the dimensionless frequency of the vortex shedding, through a
Strouhal number (St), approximately as

=
fD
v

St . (1.1)

In this equation, f is the frequency of the vortex shedding, D is the
diameter of the cylinder, and v is the velocity perpendicular to the

longitudinal axis of the cylinder. Being a fully coupled aero-elastic
phenomenon, the mechanism of forming and shedding of von Kármán
vortices is rather involved [11,12,19,29]. If the frequency of the vortex
shedding coincides with a natural frequency of the structure, intense
vibrations of the structure can occur.

Vibrations of overhead transmission lines caused by the shedding of
von Kármán vortices usually occur in the frequency range of 10–50 Hz
for low to moderate winds (1–10m/s). The first natural frequency of a
typical overhead transmission line conductor is of the order of 0.1 Hz.
Therefore, the frequency range of 10–50 Hz approximately corresponds
to the interval from the 100th to the 500th eigenfrequency of the cable.
This means that almost certainly the vortex shedding frequency mat-
ches a natural frequency of the cable. This regularly causes vibrations of
relatively low amplitudes (up to a conductor diameter). However, the
cable undergoes a very large number of cycles. This kind of wind in-
duced vibrations with relatively small amplitudes but with prolonged
duration is often referred to as Aeolian vibrations [14,22,25]. Aeolian
vibrations cause damage and even structural failure of the cable due to
material fatigue and significantly shorten its lifetime [8,1].

Extreme fatigue of cable strands occurs at points where motion of
the cable is constrained against transverse vibrations. These points are
typically suspension clamps, Stockbridge damper clamps, spacer-
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damper clamps, and aircraft warning sphere clamps. Spans with aircraft
warning spheres are prone to intense Aeolian vibrations, especially
inside sub-spans in between two adjacent warning spheres. It is often
the case that the strains at warning sphere clamps are larger than the
corresponding bending strains at the suspension clamps [2,7,22] and
are beyond the allowed limit [2]. In order to avoid damage of the cable
near the warning sphere clamps, attention should be paid to de-
termining the optimal position of Stockbridge dampers near the sus-
pension clamps, as well as near the warning sphere clamps. Because of
this, a reliable and numerically efficient procedure for the calculation of
bending strains at an arbitrary point in the span is needed.

Aeolian vibrations of overhead transmission lines are in practice
most often estimated by using the Energy Balance Method (EBM)
[9–11,17] and the Modified Energy Balance Method using eigenfunc-
tions (MEBM) [12,26–28]. By applying the EBM, a relatively dense
discrete spectrum of natural frequencies of the considered cable is ap-
proximated by the continuous spectrum of a semi-infinite one. The
energy balance between the power injected into the system through the
aerodynamic forces, the power dissipated by the vibration dampers,
and the power dissipated by the conductor due to the conductor’s self-
damping is then carried out for all frequencies of interest. After the
average free-field vibration amplitudes are obtained, the bending
strains can be determined by using approximate expressions [9]. It must
be emphasized that this simple and numerically very efficient method
can be applied only if the in-line fittings (e.g., Stockbridge dampers) are
spaced near the suspension clamps. If this is not the case, then the
MEBM should be used.

MEBM enables determination of the eigenvalues of a cable with in-
span fittings (Stockbridge dampers, aircraft warning spheres), and
therefore, enables calculation of bending strains at any point in the
span. However, the continuous spectrum approximation can no longer
be used, and discrete natural frequencies and the corresponding mode
shapes of the cable must be determined. As a result, MEBM is nu-
merically a much more demanding procedure than EMB. MEBM re-
quires a sort of optimization procedure to determine the complex fre-
quency parameters that make the system matrix numerically singular.
In each step the system matrix is a bit “more singular” (its smallest
singular value becomes even smaller) than the matrix in the previous
step, i.e., it has a higher condition number. Thus, the first and the very
crucial step of applying the MEBM is the accurate determination of the
system eigenvalues.

In this paper it is shown that there are certain difficulties in pre-
dicting the bending strains in the cable by using MEBM because they
considerably depend on the precision of the computed eigenvalues and
eigenvectors. The work presented suggests that the procedure of nu-
merical solution of the eigenvalue problem described in [26,28,27], can
be significantly improved. The improvement is deemed necessary for
two reasons. First, as shown in this paper, the method described in
[26–28] can be insufficiently accurate which may lead to an inaccurate
determination of the corresponding bending strains. Second, the pro-
cedure described in [26–28] may lead to asymmetric cable modes even
though a symmetric structure is considered. This is not a physically
possible result.

It should be emphasized that MEBM is an approximate method. Its
accuracy, apart from the numerical aspects of the method, significantly
depends on the assumptions that are built into the model, as well as on
the input data (wind power input and the mechanical characteristics of
the cable and the Stockbridge damper) that are generally difficult to
estimate.

The mechanism of forming and shedding of von Kármán vortices is a
very complex phenomenon. The empirical data on the influence of the
wind force on the cable, as well as on the power which in that way
enters the system differ significantly from source to source in the
available literature [15]. The data on the characteristics of air flows
(velocity and direction of the airflow, turbulence in the fluid flow) on
any given location are typically unknown [15]. It is also difficult to

estimate the mechanical characteristics of the cable (bending stiffness,
characteristic bending diameter, and self-damping) because they de-
pend on many parameters (cable construction, tension force, vibration
frequency and amplitudes, and temperature) [5]. Similar to the wind
power input, these data vary considerably from source to source in the
literature [4].

Dynamic properties of Stockbridge dampers are usually determined
in the lab. The force on the damper clamp is measured while the
damper clamp is subjected to controlled translational (harmonic) mo-
tion [14]. The frequency response function between the velocity am-
plitude of the damper clamp and the force acting on it is called im-
pedance. However, for a more accurate description of the damper
dynamic properties it is necessary to take into account the rotational
motion of the clamp, since both motions co-exist in reality. In this case a
Stockbridge damper should be characterized by an impedance matrix
connecting forces and torques due to translational and rotational mo-
tion of the clamp. This approach is very rarely used in practice due to its
complexity. Also, in practice it is usually neglected that the Stockbridge
damper impedance is a function of both the frequency and the clamp
vibration velocity amplitude, e.g., the nonlinearity of the Stockbridge
damper is neglected.

In this study it is shown how to solve the problem of the determi-
nation of the natural frequencies by using a hybrid optimization algo-
rithm by either singular value decomposition (SVD), or pivoted QR
factorization of the given system matrix. The way of forming the system
matrix and the energy balance procedure [26–28] are described briefly
in Sections 2 and 5, respectively. A detailed description of some specific
and useful properties of the system matrix as well as the procedure of
the numerical solution of the eigenvalue problem used in this paper, are
given in Sections 3 and 4. Numerical examples presented in Section 6
illustrate advantages of the numerical procedures developed in this
paper.

2. Vibration model of overhead transmission line with in-span
fittings

The model of an overhead transmission line cable with Stockbridge
vibration dampers and aircraft warning spheres is shown in Fig. 2.1.

Overhead transmission line cables are often modeled as beams with
bending stiffness EI and tensile forces T at the ends [6,10,11]. Trans-
verse vibrations of each sub-span can be described by a non-homo-
geneous, non-linear partial differential equation of the fourth order
(primes denote the differentiation with respect to the space coordinate
x, while dots denote the differentiation with respect to the time t)

− ″ +
= +

⁗EI w x t Tw x t ρA w x t
q x t d w w t

( , ) ( , ) ¨ ( , )
( , ) ( , ̇ , ),

j j j j j j

j K j j (2.1)

where wj is the transverse vertical displacement of the cable at a loca-
tion xj at time t EI, is the cable bending stiffness, T is the cable tension
force, ρA is the cable mass per unit length, q x t( , )j is the wind force
imparted on the cable due to von Kármán vortex shedding, and
d w w t( , ̇ , )K j j is the member representing the cable self-damping.

The transverse string vibration model is also often used since the
bending stiffness of the cable is small and its influence on the natural

Fig. 2.1. Model of an overhead transmission line cable with Stockbridge dampers and
aircraft warning spheres.
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