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ARTICLE INFO ABSTRACT

The objective of the present paper is to develop an efficient and accurate design optimization procedure to
minimize the mass of the stiffened panels subjected to uniform compression loading, while guarding against the
buckling failure. A Finite Element (FE) model based on the Integrated Force Method (IFM) is developed to
perform the buckling analysis of stiffened panels. It has been shown that the finite element analysis based on the
force methodology is able to predict the critical buckling load accurately and efficiently. The Sequential
Quadratic Programming (SQP) is then applied to the established IFM model to minimize the mass of stiffened
panels while guarding against buckling failure. An efficient analytical formulation to perform the sensitivity
analysis is formulated using the developed finite element force method, and then utilized in the SQP formulation
as the gradient information. Illustrated examples have been presented to verify the validities of the proposed
methodologies. It has been shown that comparing to the numerical sensitivity analysis, the design optimization

Keywords:

Stiffened panel

Force method

Finite element analysis
Stability analysis

using the developed analytical sensitivity formulation is very efficient and accurate.

1. Introduction

Stiffened panels are widely used in civil engineering, aerospace and
marine structures due to their economic and structural benefits. These
types of structures are mostly subjected to the compression loading, and
thus their bulking stability is of great interest [1-6]. Among all the
numerical methods, the Finite Element Method (FEM) which is based
on the Displacement Method (DM) is found to be frequently used by
researchers [4-6]. However, to correctly evaluate the critical buckling
load of the stiffened panel, a very accurate finite element model or
higher order elements are required, which subsequently increases the
computational time. This is especially more challenging for design op-
timization problems in which the FEM is combined with gradient based
optimization algorithms. During each optimization iteration, the FEM is
generally called several times, and the objective and constraint gradient
information are required for successful termination of optimization
algorithm.

To overcome the limitations associated with the conventional FEM,
a new automated formulation of the force method known as the
Integrated Force Method (IFM) has been developed by Patnaik and his
collaborators [7-10]. The IFM has been validated on various structural
analysis problems and shown excellent accuracy. It has been shown that
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the IFM can provide excellent accuracy with high computational effi-
ciency comparing with the FEM [11]. The application of the IFM to
structural optimization was first proposed by Patnaik [12]. The closed
form of the sensitivity analysis of truss/frame structures were devel-
oped to optimally design truss and beam type structures subjected to
stress and displacement constraints [13,14]. Sedaghati et al. [15] ap-
plied the IFM to truss and frame structures with single and multiple
frequency constraints, and shown that the optimum for structural
problems with multiple frequency constraints may be affected by using
different analysis procedures (force or displacement method). Recently,
Wei and Patnaik [16] investigated the probabilistic sensitivity analysis
of IFM. They [16] developed stochastic sensitivity analysis formulation
of IFM using the perturbation method and applied it to the truss
structures.

The purpose of the present paper is to develop the design optimi-
zation methodology based on the IFM to minimize the mass of stiffened
panels under system buckling constraint. Firstly, the elastic buckling
analysis model for stiffened panels using the IFM is established. Then
the sensitivity formulation using the established IFM model is derived
to provide the gradient information for the design optimization pro-
blem. Finally, the mathematical nonlinear programming technique
based on Sequential Quadratic Programming (SQP) optimization
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algorithm is combined with the developed IFM and sensitivity for-
mulations to optimally design different types of stiffened panels under
system buckling constraint. Illustrative examples are presented to de-
monstrate the validity of the proposed methodology.

2. Integrated force method (IFM)

The IFM is an automated form of the force method, in which the
internal forces are obtained by simultaneously considering the equili-
brium and compatibility equations. The equilibrium equations based on
the force balance (equilibrium) and can be written as:

{P} = [BI{F} (€8]

where {F} and {P} are the unknown independent internal forces and
nodal load vectors, respectively; [B] is the equilibrium matrix (m X n),
and m and n are the size of the nodal load factor and internal force
vectors, respectively. The structure will then have r (n-m) compatibility
equations which can be expressed as:

{6R} = [C][G]{F} ®))

where [C] is the compatibility matrix (r X n); [G] is the flexibility
matrix (n X n); and {6R} is the effective initial deformation vector (r
component) [17-19]. Finally, the equilibrium and compatibility equa-
tions (Egs. (1) and (2)) can be combined together to obtain the gov-
erning equations of the IFM as:

el - w]rﬁﬂ
W}B]W}Lﬂm (0}, @)

Therefore, the internal force vector {F} can be directly solved based
on the Eq. (3). The governing equations for the frequency and bucking
analysis using IFM can also be expressed as [19-22]:

[[S]-2[S]s){F} = {0} C)]
where
[Sp] = [K,] [T][G] (5)

in which [K,] is the geometric stiffness matrix, and [J] is the de-
formation matrix (m X n) representing the top m rows of the transpose
of the matrix [S] 1.

Based on the above introduction, one can easily realize that the key
issues for the IFM is to obtain the equilibrium matrix, [B], the flexibility
matrix, [G] and the compatibility matrix, [C], which will be summar-
ized in the following sub-sections. The definition of the geometric
stiffness matrix [K,] is directly related to the selected element, and it
will be presented in the next section.

2.1. The equilibrium matrix ([B])

Similar to the displacement method the displacements {U} are in-
terpolated in terms of nodal displacements {U,} as:

{U} = [N}{U} (6)

where [N] is the displacement interpolation matrix (shape function).
Stresses {0} are also interpolated in terms of independent internal
forces {F}, which are unknown in the formulation as:

{o} = [YI{F} @

where [Y] is the stress interpolation matrix. Based on Eq. (6), the strain
can be expressed as:

{e} = [LIAND{T} = [Z]{Te} (8

where [Z] = [L][N] and [L] is the matrix of differential operator based
on the definition of the coordinate.

Applying the principle of virtual work, one can obtain the general
expression of the equilibrium matrix [B] through the domain (v) as:
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(8] = [ 21" [Y]dv ©

On the basis of the internal complimentary virtual work related to
the internal virtual force vector {§F}, one can obtain the Displacement
Deformation Relationship (DDR) between the elastic deformation
vector, {f.}, and the nodal displacement vector, {U,}, as:

{8} = [BI" (Ui} (10)
2.2. The flexibility matrix ([G])

Based on Eq. (7), and the stress-strain relationship:
{e} = [Dl{o} an

where [D] is the compliance matrix, one can apply the principle of the
complementary strain energy and the castigliano’s theory to obtain the
expression of the flexibility matrix as:

1

[6l= 7

JS YT IDIY]dv 12)

and the expression of the elastic deformation vector, {.}, can then be
described as:

{6.} = [GI{F} 13)

2.3. The compatibility matrix ([C])

The compatibility is the condition of strain and deformation bal-
ance, and required the compatibility equation as:
[CliBr =0

It should be noted that the deformation vector {3} consists of the
initial deformation vector, {fo}, and the elastic deformation {f.}, as

{B} = {Bo} + {Bc}, and then
[C1{B.} = {oR}

14)

(15)

3. Finite element model of the stiffened panel using IFM

The stiffened panel, as shown in Fig. 1, consists of a flat plate and a
stiffener. The mid plane of the plate is considered as reference plane for
both the plate and the stiffener. The stiffener and the plate are assumed
to be buckle simultaneously and the model is based on the behavior of
the plate-stiffener system. The stiffener is assumed to be of solid cross
section (ignoring the warping effects). The bending strain, developed
due to the action of in plane loading, is considered for the buckling
analysis. The central axis of the stiffener is eccentric from the reference
axis by the distance e, which is called eccentricity of the stiffener. The
eccentricity of the stiffener is taken into account in the finite element
model by considering the additional in-plane deformation produced by
eccentricity of the stiffener. The finite element model for the elastic

THIN PLATE
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Fig. 1. Stiffened panel.
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