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A B S T R A C T

The study of new design methods targeted to minimize the use of materials is a theme of great relevance
nowadays; structural designers pursue structural solutions characterized by efficiency, sustainability and opti-
mization. Funicular systems adopt the “right” shape in accordance with the applied load and are ideally able to
act without introducing bending. In this work an effective and easy-to-read method to study and quantify the
funicularity is presented and applied to structural shells obtained using form finding, and analyzed under dif-
ferent static loads. In order to formulate the new method, the classical funicularity concept has been extended
and the definition of Relaxed Funicularity (R-Funicularity) introduced. The parameter used to define the funi-
cularity is the eccentricity and a structural shell is called R-Funicular when the eccentricity is included into an
admissibility interval.

1. Introduction

Quoting Sergio Musmeci [1,2]: “There is no reason why the un-
known factors should always be the internal stresses and not, for ex-
ample, the geometric parameters which define the form itself of the
structures, since in this latter case a uniformity of stresses and a more
complete and efficient use of material may be obtained. With this
method, it is possible to arrive at a synthesis of new forms rich in ex-
pressive strength.” Musmeci’s quote is of great relevance to our con-
temporary societal context, the construction industry is largely re-
sponsible for CO2 emissions [3] and structural designers could reduce
this negative impact by targeting efficient structural behavior and use
of materials. Among efficient and optimized structural systems, funi-
cular structures adopt the “right” shape in accordance with the applied
load. Funicular shell structures are ideally able to resist external loads
using membrane forces, mainly tension or compression forces, without
introducing bending. As a result their thickness can be minimized and
the amount of material reduced. Different form finding techniques have
been developed and used to achieve “optimal” structural geometry in
static equilibrium with a design loading [4]; for shell structures this
loading is usually a gravity load due to the dominance of the shell’s self-
weight with respect to other applied loads [5].

1.1. About funicularity

The idea of funicularity has been formalized from an analytical
point of view between 15th and 17th century. Otherwise one can

observe many funicular structures constructed before this time, thanks
to experience and static considerations of the designers and con-
structors; suspended bridges and corbelled domes represent some early
examples. During the Roman period, builders seem to have some
awareness of funicularity expressed in attempts to change load dis-
tributions to achieve better structural stability (e.g. use of filler mate-
rials or use of concrete with graded density) [6]. In order to find some
written essays concerning this topic, one needs to look at the 13th
century. The medieval architect Villard de Honnecourt in his manu-
script “Livre de portraiture”, between sketches and notes, describes how
to construct a cross vault optimizing the entire process with the ap-
plication of the rule of the three arches [7]. At a later date, it has been
confirmed that cross vaults constructed respecting this rule have a
better structural behavior since the bending stresses are reduced [8].
This could demonstrate an intuition of the relationship between shape
and performance of the structure, even if this concept was not analy-
tically expressed during the Middle Ages [9]. Starting from the 15th
century, the first studies on arches and cables appear. Theoretical de-
finitions attempt to justify and formalized what was experimentally
evident. Leon Battista Alberti (1404–1472), Andrea Palladio
(1508–1580), Leonardo da Vinci (1452–1519) and Simon Stevin
(1548–1620) are some of the most celebrated scientists to give a fun-
damental contribution to the formulation of the behavior of curved
structure and of the arch equilibrium [6]. Galileo Galilei (1564–1642)
was the first one who attempted to give a mathematical description of a
cable; in his writing “Dialogues Concerning Two New Sciences” (1638),
mistakenly using an erroneous analogy with the parabolic motion of
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projectiles, he confused catenary and parabola [10]. Joachim Jungius
(1587–1657) rejected Galilei’s statement, demonstrating the difference
between the two, which increases when the sag to span ratio decreases.
Jungius’s writing “Geometria Empyrica” was published in 1669 after
his death [6]. The correct equation of a cable’s geometry was written in
1691 by Gottfried Wilhelm von Leibniz (1646–1716), Christiaan Huy-
gens (1629–1695) and Johann Bernoulli (1667–1748) [11]. Huygens
was the first one to use the term “catenaria” in one of his missive to
Leibniz. English engineer and scientist Robert Hooke (1635–1703) gave
an additional fundamental contribution in 1676 publishing the Latin
anagram indicated in Fig. 1. The solution was published by the secre-
tary of the Royal Society, Richard Waller in 1705 and read “Ut pendet
continuum flexile, sic stabit contiguum rigidum inversum”, the trans-
lation is “As hangs the flexible line, so but inverted will stand the rigid
arch” [12]. The concept is simple: in order to obtain an arch that acts in
pure compression, the shape of the equivalent hanging chain needs to
be inverted. During the same years, David Gregory (1659–1708) stated
that an arch is stable if the thrust line, that is the line representing the
path of the resultants of forces acting in a structure, lies within its
thickness [13]. This is the basic concept behind the structural assess-
ment of masonry structures. Some years later, following Gregory’s
studies, Claude-Louis Navier (1785–1836) and E. Méry (1840) sup-
posed that in order to have an arch fully compressed, the thrust line
would have to lie within the middle third of his section [14]. The thrust
line becomes an indicator of the stability of arches: the more this line
lies away from the axis of the arch, the more its thickness needs to be
increased. Hence the “right” shape for an arch is the one corresponding
to the funicular of the loads applied.

1.2. Form finding

In the last two centuries, three different groups of methods have
been formalized to “find the right shape” and define funicular geome-
tries. The first one uses physical models where bending stiffness is ne-
glected, as hanging chains or membranes or thread models [4]. The
inversion principle is applied to find bending-free shapes. Sir Christo-
pher Wren (1632–1723) and Giovanni Poleni (1683–1761) used chain
models to design the dome of the St. Paul’s Cathedral in London and to
assess the structural behavior of the dome of the St. Peter’s Cathedral in
Rome, respectively. More recently, Antoni Gaudì (1852–1926), Frei
Otto (1925, 2015) and Heinz Isler (1926–2009) are some of the most
famous designers who used this method to establish structural shapes in
their projects. Hanging models used by Gaudì are indicated in Fig. 2.

The second group is made of graphic methods, among which gra-
phic statics is the most well known. This one is based on the dualism
between the funicular polygon and the force polygon introduced by
Varignon (see Fig. 3) and has been widely applied during 19th century
by Karl Culmann (1821–1881), Luigi Cremona (1830–1903), James C.
Maxwell (1831–1879), William Rankine (1820–1872) and Rafael
Guastavino (1842–1908) [6,14,15].

The last and most recent group is made of numerical methods, de-
veloped from 1960, which can be subdivided between stiffness matrix
methods, geometric stiffness methods and dynamic equilibrium
methods depending on the computational approach adopted [16].

Nowadays computer aided models and digital morphogenesis
models have also been developed, making more approachable the ap-
plication of form finding methods to search the “right” structural shape.
An example of a computer-aided model is given in Fig. 4 and is similar
to the one used in the numerical studies explained in Section 5.

1.3. Funicularity evaluation

When no-bending occurs, the shape is determined by forces and vice
versa. This is valid for 1D shapes, but it can be interpreted differently
for shells. In theory, as confirmed by different authors, a shell properly
supported can carry any load by membrane action only. Belluzzi [17]
declares that “the behavior of a membrane differs from that of a cable.
[….]The membrane is always in equilibrium for every external force
and irrespective of its initial shape, and this equilibrium is satisfied
solely by means of the internal membrane forces”. In Pizzetti et al. [18],
it is stated that “from a theoretical point of view, one could expect to
oppose any curved thin surface to any load, confident that this surface
will organize to perform statically at its best, that is a bending-free
behavior.” However bending-free behavior is only valid under two as-
sumptions: the boundary conditions are congruent with the shape
considered and the load applied, and the ratio between membrane
stiffness and flexural stiffness tends to infinity; therefore a pure mem-
brane model is applicable. In this circumstance the structure is locally
isostatic and the equilibrium equations can be solved directly.

In practice, however, matters may not be so simple. Calladine [19]
confirms that for a membrane “the nature of the solution may depend
on the shape of the shell surface and the nature of the boundary con-
ditions.” Summarizing for a given shape and load, a funicular behavior
can be found assigning the right boundary conditions to the shell
analyzed; otherwise, for a given load and boundary conditions, the
right shape needs to be found in order to obtain a no-bending behavior.
Hence defining the “right” shape becomes crucial and different form
finding techniques can be used for this purpose. Furthermore, when
designing an actual surface, an elastic shell problem has to be solved:
the flexural stiffness starts playing a role and the problem becomes
hyperstatic. Bending moments, even if minimal, will arise. This also
happens for form found shell surfaces when the thickness increases and
consequently the ratio between membrane stiffness and flexural stiff-
ness decreases.

The mutual dependency between shape and applied load leads to
the common criticism made on the effective application of form finding
methodologies; they can be suited to preliminary design, but the re-
search of the shape cannot be generalized when the relevant load cases
are multiple, since no-bending behavior cannot be guaranteed for all of
them [4]. When this is the case and bending moments cannot be

Fig. 1. Robert Hooke’s anagram (Hooke, 1676) and
Poleni’s drawing of Hooke’s analogy between an arch
and a hanging chain.

S. Gabriele et al. Engineering Structures 157 (2018) 157–169

158



Download English Version:

https://daneshyari.com/en/article/6738719

Download Persian Version:

https://daneshyari.com/article/6738719

Daneshyari.com

https://daneshyari.com/en/article/6738719
https://daneshyari.com/article/6738719
https://daneshyari.com

