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A B S T R A C T

The analysis of members that can be modeled as extensible elastic slender rods is investigated. A meshfree
formulation using a Local Radial Point Interpolation Method (LRPIM) is developed that utilizes radial basis
functions in curvilinear coordinates. This approach bypasses the need to utilize more conventional element
meshes and significantly reduces the number of equations needed for the numerical solution. The slender rod
formulation presented allows for tension variation, axial stretch, incremental loading and distributed load
variation along the rod. It is well suited for nonlinear problems that involve large deflections and rigid rotations.
The position and tangent vectors are expressed using Hermite-type approximations, and radial basis functions,
while the interpolation of tension variation and distributed loads are described using polynomials. The solution
procedure of weighted residuals Galerkin weak formulation combined with an incremental iterative numerical
scheme is introduced to address the incremental loading and large deflection issues for static and quasi-static
problems. The implementation of the analytical formulation and the numerical procedure are illustrated using
three nonlinear problems. The first two examples provide insight into the validity, accuracy, and efficiency of the
methodology. The third example presents the case of a moving boundary condition problem which models a
cable entangled by fishing boat-trawling equipment.

1. Introduction

Slender rod/beam models of structures are widely employed in civil
and offshore engineering. Examples include subsea power cables
transmitting electricity, catenary cable in a suspension bridge, marine
risers used to vertically recover hydrocarbons from subsea wells to
floaters, and mooring line systems used for station-keeping of floating
vessels. These applications typically adopt finite element modeling to
predict the behavior of members. Meshfree methods do not require a
fine grid/element mesh over the problem domain and consequently
may have comparative advantage over finite element analysis for some
nonlinear problems, e.g. large deflection problem induced by large rigid
rotation and displacement. Since meshfree methods adopt a local ap-
proximation of field values using a group of neighboring nodes rather
than nodes in a predefined finite element, there is no element distortion
issue, and the domain representation in the proposed meshfree method
can follow the instantaneous configuration of deformed slender rods. In
recent years, Zhou [1–3] further developed and implemented catenary
cable element using Finite Element Formulation in the dynamic re-
sponse study and the cable-breakage event investigation of long-span
cable-suspension bridges. By introducing joint node, the catenary cable
element approach exhibits its merit on complex engineering structures
embracing slender rod-like members with concentrated loads.

Differently, the proposed method in this paper can solve problems with
moving boundaries using the proposed numerical scheme.

In recent decades, innovative meshfree methods have been devel-
oped and implemented to solve 4th order partial differential equations
(PDEs). Various capabilities of meshfree methods have been demon-
strated in the solution of conventional structures that involve systems of
beams, plates, and shells. Pioneers including Belytschko [4], Liu [5],
Atluri [6], Liu [7] have lead the development of meshfree methods with
the introduction of the element free Galerkin (EFG) method, the re-
producing kernel particle method (RKPM), the meshless local Petrov-
Galerkin method (MLPG), the point interpolation method (PIM), and
the radial point interpolation method (RPIM), respectively. The differ-
ences between these methods include weak formulations and field in-
terpolation techniques. These meshfree methods have been applied to
thin and thick beams problems by a few scholars. Using the Reprodu-
cing Kernel Particle Method (RKPM) approach in the construction of
shape functions for the field interpolation and constitutive law, Chen
[8] obtained the solution for the large deformation of a thick beam
involving the geometric and material nonlinearities. Donning [9] ap-
plied Galerkin weak formulation and RKPM interpolation scheme to a
curved beam and a Mindlin plate. Subsequently, the MLPG was vali-
dated by a comparison to the analytical solution of Bernoulli-Euler
beam theory [10]. By adopting the local weak formulation, the PIM was
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applied to a straight thin beam by Gu [11], which borrows the idea of
the discretization of strong-form governing equation from MLPG. Cui
[12] applied the gradient smoothing technique proposed by Liu [13] to
obtain the solution of a thin beam, assuming that the rotation angle and
the displacement as independent variables in the field value inter-
polation, while, the weak formulation was addressed using a gradient
smoothing technique. Later Liu [14,15] studied the effects of shape
parameters of RPIM and recommended the optimal parameters based
upon comparative numerical studies of four common radial basis
function families. The meshfree method adopts field nodes to represent
the problem domain and it overcomes the difficulty of instantaneous re-
meshing of deformed structures experiencing large deflections.

The evolution of numerical solutions for the large deflection of
slender rod formulations dates back to the 1970s, where Nordgren [16]
and Garrett [17] formulated the equation of motion of slender rods by
vector analysis in a curvilinear coordinate and then obtained solutions
using finite difference and finite elements respectively. Later Ma [18]
extended this formulation to a flow line with internal pressure and
under complex hydrodynamic loads and for offshore applications in a
two-dimensional space. Subsequent to that Chen [19] introduced a new
constraint condition allowing large elongation to tension dominant
slender rod and further implemented the three-dimensional formulation
in a program named Cable3D [20].

In this paper, a Local Radial Point Interpolation Method (LRPIM) is
formulated to the extensible slender rod-like structure experiencing
large deflection using Hermite-type radial basis function for field value
approximations. Only a group of field nodes is utilized to describe the
problem domain and no element is used in the formulation. Compared
with a finite element formulation, the formulation presented reduced
the N equations adopting as compared with the same number of field
nodes as Finite Element Method. A local weak formulation is adopted in
order to transform the partial differential equations into linear alge-
braic equations. Instead of using the deflection as independent variable
of beam theories, the position vector using the arc length along the rod
is employed as a primary variable. The tangent vector at specified
points on the rod is also introduced as the additional variable in order
to form a closed solution. Further, associated numerical issues are in-
vestigated such as the shape function, the shape parameters and the
numerical convergence. The static analyses of a post-buckling column,
and a catenary cable were performed to validate the methodology
presented. A third example with moving boundary and varying cable
length is introduced in order to demonstrate the capacity of the for-
mulation to easily address cables with change in length and moving
boundaries. Since the torsional stiffness is not addressed in the meth-
odology presented, it is limited to engineering structures where torsion
can be neglected. Practical offshore engineering examples include the
global analysis of vertical risers for offshore oil and gas production and
the interaction of subsea cables entangled with fishing gear.

2. Slender rod formulation

We begin by reviewing the slender rod formulation as initially
presented by Nordgren [16] and Garrett [17], where uniform bending
stiffness, no shear deformation and no rotational inertia are assumed.
The instantaneous configuration of a cable is described by →r s t( , ) as
shown in Fig. 1. The unit tangent vector, the unit normal vector, and
the unit binormal vector are denoted as→t ,→n and

→
b , respectively. Some

basis in the differential geometry of curves including the Serret Frenet
formulae are utilized and the unit normals can be written as

→ = →′ → = →″ →
= → × →t r n r κ b t n, / , (1)

where prime denotes the derivative with respect to s and κ is the cur-
vature defined by an identity = →″ →″ = −→′ →‴κ r r r r· ·2 .

Fig. 2 illustrates a differential element on the slender rod, and ac-
cording to the conservation of linear and angular momentum, the

equations of motion can be expressed as

⎯→⎯
+ → = →F q ρ r̈ (2)

⎯→⎯ ′ + → ×
⎯→⎯

+ ⎯→⎯ =M t F m 0 (3)

where, ρ is the mass per unit length, →q and ⎯→⎯m are the distributed force
and moment along the rod per unit length respectively, and

⎯→⎯
F and

⎯→⎯
M

are the internal force and moment of the cross section. The double dot
notation indicates the second derivative with respect to time t.

Although small deformations were initially assumed, these equa-
tions allow for large deflection of the slender rod taking into account a
small rotational angle caused by bending and resulted rigid body mo-
tion. Thus, the Bernoulli-Euler beam theory is still applicable to the
constitutive law adopted here, and the bending moment and torque are
proportional to curvature and twisting angle per unit length and can be
expressed as

⎯→⎯
=

→
+ → = →′ × →″ + →′M EIκb H t r EI r H r( ) (4)

⎯→⎯ ′ = →′ × →″ ′ + ′→′ + →″M r EI r H r H r( ) (5)

where, EI is the bending stiffness, =H Cα is torque, C is the torsional
rigidity, and α is the angle of twist per unit length.

Upon substituting Eq. (5) into Eq. (2), one obtains the following
equation

→′ × →″ ′ + ′→′ + →″ + →′ ×
⎯→⎯

+ ⎯→⎯ =r EI r H r H r r F m( ) 0 (6)

Evaluation of the cross product in Eq. (6) by→′r yields the expression

⎯→⎯
= →′− →″ ′F λ r EI r( ) (7)

Then substituting Eq. (2) into Eq. (7) leads to the equilibrium
equation

− →′ + →′ ′ + = →′′′
EI r λ r q s ρ r( ) ( ) ¨ (8)

where, = −λ T EIκ2 is the Lagrange multiplier.
The governing equation expressed by Eq. (8) is derived based on the

Fig. 1. Cartesian coordinate and curvilinear coordinate for a slender rod.

Fig. 2. A differential segment on a rod.

Y. Bai, J.M. Niedzwecki Engineering Structures 156 (2018) 82–91

83



Download English Version:

https://daneshyari.com/en/article/6738801

Download Persian Version:

https://daneshyari.com/article/6738801

Daneshyari.com

https://daneshyari.com/en/article/6738801
https://daneshyari.com/article/6738801
https://daneshyari.com

