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This work studies the dynamic properties and non-linear responses of a sectional model of long-span cable-
supported bridge deck under scenarios of resonance with vortex induced vibration or wind fluttering. The cable
supported bridge with spatially inclined cables is modeled by a 6-degrees-of-freedom system. The equations of
motion for an undamped system are formulated for the study of the effects of inclination angle of cable on the
modal parameters. The inclination angle is found strongly affecting the torsional modal frequency of the deck.
The equations of motion on the forced excitation of a damped system are also developed for the study of non-
linear responses when in resonance. The response analysis is conducted with the Incremental Harmonic Balance
method. The inclination angle does not have notable nonlinear effects on the primary resonance of deck heaving
response with vertical excitation as the responses of the system are almost identical with those obtained through
the linearized model. However, the primary resonance response due to periodic pitching moment indicates an
increasing nonlinear effect with an increase in the cable inclination angle. The cables vibrate strongly in both the
horizontal and vertical directions with multiple frequency components and non-zero stationary component. The
super-harmonic resonance of deck heaving and rotation can only be observed when the damping ratio of system

is extremely low.

1. Introduction

Oscillation of long-span cable-supported bridges, such as the vi-
bration under aerodynamic forces [1-3] and moving automobiles
[4-6], is an important safety issue for the structure. Many mathematical
models have been developed to investigate different scenarios of vi-
bration of this kind of structure system.

Some researchers adopted a continuum model, which was originally
designed for the study of linear vertical vibrations of cable-supported
bridges. The stiffened truss girder was modeled by an Euler—Bernoulli
beam, and the main cables supported the bridge deck through in-
extensible and distributed vertical hangers. Bleich et al. [7] proposed
the classic continuum model based on the linearized deflection theory.
The linear theory of a suspended elastic cable transformed a taut string
into an inextensible suspended cable with a small sag [8]. Luco and
Turmo [9] re-examined the classical continuum modeling approach
with an extension for the study of modal frequencies, mode shapes, and
modal participation factors of an extensible suspension cable. Abdel-
Rohman [10] studied the influence of higher order vibration modes on
the dynamic response of a cable-supported bridge. It was shown that
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the influence of the higher order modes, when the suspension bridge is
subjected to wind loading, is more significant than in the case when the
bridge is subjected to a moving load. Besides the above studies on a
linear system, the vibration based on non-linear models was also stu-
died [11-13]. Ding [14,15] studied the periodic oscillations in a cable-
supported bridge system under periodic external forces. Malik [16,17]
formulated the nonlinear model of a cable-supported bridge structure
from the principle of minimum potential energy to describing the be-
haviour of bridge deck with discussions on the solution stability cri-
terion.

Other researchers developed sectional models which can capture the
essential characteristics of the dynamic behavior of the structure. They
comprise of rigid bodies and springs. The occurrence of high-amplitude
oscillation can often be related to the modal properties of the structure,
and many large vibrations are related to the resonance of the structure.
These sectional models have been demonstrated to be capable to il-
lustrate the interaction performance between oscillations in the tor-
sional and vertical directions, though in an approximate and analytical
form. Two Degrees-of-Freedom (DoFs) system has been adopted in
many studies for the analysis of rotational response of the bridge deck
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(a) Pedestrian cable-supported bridge

Engineering Structures 156 (2018) 351-362

(b) Sectional model

Fig. 1. Model of cable-supported bridge with spatially inclined cables. (a) Pedestrian cable-supported bridge; (b) Sectional model.

[18-21]. Plaut and Davis [22] extended the two-DoFs model into four-
DoFs model by introducing two more DoFs which represent the vertical
motion of the main cables on two sides. De Freitas et al. [23,24] used
the Lazer-McKenna model to study the nonlinear properties of the
system under periodic external forces. More recently, a multi-body
system was proposed to model the bridge section of long span cable-
supported bridges for both linear and nonlinear dynamic studies
[25-27]. This four-DoFs system accounts for both the vertical-torsional
motion of the bridge deck and the transversal motion of a pair of
hangers or stay cables. The interaction between the motions of the
bridge deck and stay cables was systematically investigated.

Although various models have been proposed to investigate the
linear and nonlinear dynamics of cable-supported bridge, yet all these
models were based on the traditional bridge configurations with the
main cables and hangers in a vertical plane supporting the bridge deck
below. It should be noted that some new bridges have been constructed
in the last few decades where the main cables supporting the bridge
deck have a spatial geometric layout with inclined angle to the hor-
izontal direction. One of such bridge is shown in Fig. 1(a). The cables
support the deck in both the vertical and lateral directions, whereby the
stiffness coupling of the cables and deck would significantly affect the
modal properties of the structure.

There has not been any study on the resonance of such cable-sup-
ported bridge deck when under vortex induced vibration or flutter. The
effect of geometric nonlinearity in the new type of cable supporting
system may be significant compared to that with vertical cable support.
Thus this new type of bridge structure requires detailed study on its
dynamic properties. A six-DoFs model is developed in this paper for this
type of cable-supported bridge, and its dynamic properties with dif-
ferent inclination angle of the cables are investigated. The non-linear
vibration in the responses is studied when the structure is in resonance.
The equation of motion of a free undamped system and a damped
system under external excitation are formulated. They are solved with
the Incremental Harmonic Balance method for the study of the non-
linear dynamic responses of the cables and deck in two directions.

2. Model of the system

The proposed model is a 6DoFs system comprising of three masses
linked up by six springs as shown in Fig. 1(b). The masses are from the
sectional bridge deck and the two cables. The six springs are classified
into four types: S-1 denotes the in-plane stiffness of the main cable; S-2
denotes that of the hanger; S-3 and S-4 denote the vertical and torsional
stiffnesses provided by the bridge deck. This model can be used to study

all the motions of the sectional bridge deck and cables in the y-z plane,
and the contributions from the cables, hangers and deck to the system
can be accounted for. All variables in the figure are defined as follows:

Vi (i=1,2) Projection of S-i (i = 1,2) in vertical direction
H; (i=1,2) Projection of S-i (i = 1,2) in horizontal direction
D Half of the breadth of bridge deck

a Representative inclination angle of cable and

H + H
M+

Length of spring S-i (i = 1,2,3)

hanger, o = arctan
LG=1,23)

m Mass of cable

M Mass of bridge deck

J Moment of Inertia of bridge deck

k; i = 1,2,3,4) Stiffness of spring S-i (i = 1,2,3,4)

u; (i=1,2) Horizontal DoF of m

vi(i=1,2) Vertical DoF of m

y Vertical DoF of M

0 Rotational DoF of M

Fes Internal force of S-1 under static condition

Fis Internal force of S-2 under static condition

Pei (i = 1,2) Angle between S-1 on two sides and the
vertical plane

Phi (i = 1,2) Angle between S-2 on two sides and the

vertical plane
The equations of motion governing the free undamped vibration of the
system can be written as follows:

My + ksy—(Fis + Fiua1)c08(@y)—(Fis + Fiua2)c0s(@y,) + Mg = 0 (1a)
JB + kyO—(Fis + Fuan)c08(¢;,) DcosO + (Fis + Frgz)cos(@,,,) Deosd

+ (Fis + Fua1)sin(gy,;)Dsing + (Fis + Fraz)cos(@,,,)Dsiné = 0 (1b)
miiy + (s + Fq)sin(@q,)—(Fns + Fra)sin(g,,) = 0 (10)
miiy + mg—(Fis + Fea)c0s(@,) + (Fis + Fha1)cos(@y,) = 0 ad
mily + (Fis + Fa2)sin(@,)—(Fhs + Faz)sin(gy,) = 0 (le)
mii; + mg—(Fs + Foa2)cos(@,) + (Fhs + Fhaz)cos(@y,) = 0 1n

where F_4; and Fyq; (i = 1,2) are the dynamic spring forces in springs S-1
and S-2 on two sides. F.s and F;,s can be obtained from the static balance
equation of the system in both horizontal and vertical directions under
the gravity load. It can be noted that when ¢ and ¢y; (i = 1,2) are
equal 0°, the model will represent a bridge with vertical cables and
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