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A B S T R A C T

This study proposes a mode shape scaling and parameterization scheme for modal identification with known
input. Through the derivation of the equations for known input modal identification using the proposed mode
shape scaling and parameterization scheme, the study provides insight into the relationship between the iden-
tified modal parameters and information required in the forced vibration test. In typical applications of modal
identifications, when there is sufficient amount of data, the formulation using the proposed mode shape scaling
and parameterization scheme shows that it allows modal parameters to be determined efficiently in a globally
identifiable manner. An illustrative example using synthetic data is provided in this study. The findings show
that an appropriate mode shape scaling and normalization scheme could reduce the information required in the
modal identification procedure for some modal parameters, i.e. natural frequencies, damping ratios and mode
shapes. This significantly simplifies the procedure of the forced vibration test, and hence, it can be carried out in
a more robust manner.

1. Introduction

Modal identification is a technique that allows extraction of the
modal parameters, such as natural frequencies, damping ratios, and
mode shapes, of a structure from measured vibration data [1]. The
identified modal parameters can then be used for structural model
updating [2] and damage detection [3]. In the last decade, vibration
tests have been carried out on different types of structures, e.g. bridge
[4], tower [5] and building [6].

Forced vibration test makes use of a special device, such as shaker or
impact hammer, to produce vibration response of structures for iden-
tifying modal properties. Memari et al. [7] carried out a forced vibra-
tion study on a six story steel frame building during the construction
stage. The forced vibration was carried out when steel frames, floor
slabs and some of the walls were completed. An unbalanced mass ex-
citer was installed at the roof of the building to induce the excitation.
Natural frequencies, damping ratios and mode shapes were identified
from the measured acceleration data. Halling et al. [8] conducted a
forced vibration test on a concrete deck steel girder bridge. An eccentric
mass shaking machine was used to generate the required excitation on
the bridge. The study identified the natural frequencies and mode
shapes. These identified modal parameters were also used to update a
finite element model of the bridge. Burgueno et al. [9] carried out a

forced vibration test on a fiber reinforced polymer (FRP) composite
bridge. They employed a long stroke electro-dynamic force generator to
excite the bridge and the measured acceleration data was used to
identify the natural frequencies and mode shapes.

Although more demanding in terms of budget and logistics, forced
vibration test has several advantages over free [10] or ambient vibra-
tion tests. Essentially, the signal-to-noise ratio of data can be sig-
nificantly improved and the information of input excitation can sig-
nificantly reduce the identification uncertainty of modal parameters
[11]. In typical applications, the location and direction of the artificial
excitation is assumed to be known, although in some cases it is difficult
to control them in field testing conditions [12].

The objective of this study is to demonstrate that an appropriate
mode shape scaling scheme can reduce the information required in the
modal identification procedure for some modal parameters, such as
natural frequencies, damping ratios and mode shapes, allowing forced
vibration tests to be performed in a more robust manner. A mode shape
scaling and parameterization scheme is first proposed, which allows
modal parameters to be determined efficiently in a globally identifiable
manner. Based on this scheme, implications on the required informa-
tion in the modal identification are discussed. A Bayesian context is
assumed as it allows uncertainties to be fundamentally quantified, but
the implications on identifiability are general and applicable to other
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non-Bayesian or deterministic approaches.
Section 2 first summarizes the formulation of the known input

modal identification. Section 3 proposes the mode shape scaling and
parameterization scheme and its formulation of the known input modal
identification. Section 4 discusses the relationship between modal
identification and the information of the exciter configuration. Section
5 presents the formulation of the Bayesian approach under the pro-
posed mode shape scaling and parameterization scheme. Insights and
practical aspects are discussed in Section 6. Section 7 presents an il-
lustrative example. Finally, conclusions are provided in Section 8.

2. Modal identification with known single input

Consider a multi-degree-of-freedom (MDOF) structure satisfying the
dynamic equation:
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where M, C and K are respectively the conventional mass, damping,
stiffness matrices; and tF( ) is the force vector. With mass normalization,
the i-th modal force is given by
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and ∈i Rφ( ) n is the (partial) mode shape vector of the ith mode con-
fined to the n measured dofs. Without loss of generality, suppose the
acceleration response of the structure is measured at n degrees of
freedom (dofs). Assuming m contributing modes, the measured data in
the frequency domain can be modeled as
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where Fk is the fast Fourier transform (FFT) of measured data at fre-
quency = k N tf / Δk (Hz); N is the number of samples per data channel;

tΔ is the time step; Pik is the FFT of the modal force at k-th frequency; εk
is the prediction error (e.g., measurement noise). For a given mode i, hik
is the transfer function between modal excitation and modal accelera-
tion:

= − − + −h β ζ βi[( 1) (2 )]ik ik i ik
2 1 (4)

where =β f /fik i k is a frequency ratio; = −i 12 . fi (Hz) and ζi are re-
spectively the natural frequency and damping ratio.

During testing measurement, suppose the structure is subjected to a
single dominant source of artificial excitation that is also measured.
Depending on the direction of the applied excitation on the structure,
the force can be distributed to more than one dof. For convenience in
analysis, assume without loss of generality that the force on the jth
measured dof is given by ma s t( )j , where m (kg) is a nominal mass value
(e.g., moving mass of a shaker), aj is a dimensionless factor accounting
for the contribution of force to the dof, which has value between 0 and
1, and it is zero on other unmeasured dofs. s t( ) (m/s2) is a time-varying
function of excitation (e.g., acceleration of shaker mass). In this context,
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1 . The modal force and its
FFT are given by
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where Sk is the FFT of s t( ) and
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is the ratio of nominal mass to the modal mass. Substituting Eqs. (4) and
(6) into Eq. (3), we have
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3. Mode shape scaling and parameterization scheme

Eq. (8) is the basic equation that relates the data F{ }k and S{ }k to
modal parameters. The modal parameters include, for each mode, fi
(natural frequency), ζi (damping ratio), ri (modal mass ratio) and iφ( )
(mode shape); and parameters defining the statistical properties of the
prediction error. The mode shape is subjected to a scaling constraint.

Using Eq. (8) directly to identify the modal parameters does not lead
to an effective scheme, primarily because of its quadratic dependence
on mode shape iφ( ), which is also subjected to scaling constraint. For
example, Eq. (8) will lead to a fourth-order dependence on mode shape
in the objective function of a least square approach. Here, a mode shape
scaling and parameterization scheme is proposed that allows the
parameters to be determined efficiently in a globally identifiable
manner and reduce the information required in the modal identification
procedure. Beyond significance of computational nature, an interesting
implication of the scheme is that the identification results are found to
be invariant to the vector a, which reflects the location and orientation
of the artificial excitation. These practical implications shall be dis-
cussed in Sections 4–6.

Conventionally, mode shapes may be scaled to be 1 at a particular
dof or to have unit norm [13–16]. Neither of these can eliminate the
quadratic dependence in Eq. (8) on mode shape. Upon investigation of
the mathematical structure of the problem, it is found that the following
scaling constraint allows the problem to be resolved while allowing for
flexible implementation without prior information
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becomes a linear function of iφ( ). Note that ri and iφ( ) are subjected to
the constraint =iφ a( ) 1T . The formulation can be further simplified by
combining them into an unconstrained vector
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so that
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The parameters to be identified now comprise, for each mode i, fi, ζi,
iφ ( )r with no constraint; and parameters specifying the statistical

properties of εk. Once these parameters are identified, the modal mass
ratio can be recovered by using Eqs. (9) and (11)

=r iφ a( )i r
T (13)

4. Invariance to exciter configuration

In addition to providing an effective formulation for modal identi-
fication, the mode shape scaling and parameterization scheme in
Section 3 also leads to an interesting implication on how identification
results depend on exciter configuration. Specifically, for given data
( F{ }k and S{ }k ), the information of a, which is related to exciter location
and orientation, is not needed to identify fi, ζi and iφ ( )r as shown in Eq.
(12) and the same for other parameters related to the statistical mod-
eling of prediction error. However, different values of a do affect the
identification results because it affects the excitation magnitude. Al-
though the scaling constraint on iφ( ) in Eq. (9) depends on a, iφ( ) is in
fact invariant because it has the same ‘shape’ as iφ ( )r . To see this,
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