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a b s t r a c t

The stay cables are one of most critical elements for cable-stayed bridges. This paper proposes a machine-
learning based condition assessment method for stay cables by using the monitored cable tension force.
First, based on the correlation of cable tension response between cable pairs (defined as the two cables at
the upriver side and the opposite downriver side in the double cable planes), cable tension ratio is
extracted as the feature variable, and the cable tension ratio is defined as the ratio of vehicle-induced
cable tension between a cable pair. It is found that cable tension ratio is only related with cable properties
and the transverse position of a vehicle over the deck. Vehicles on the bridge naturally cluster themselves
into a few clusters that correspond to the traffic lanes, i.e. the vehicles in one lane form a cluster.
Consequently, the vehicle-induced cable tension ratio forms the corresponding clusters or patterns.
Gaussian Mixture Model (GMM) is employed for modelling the patterns of cable tension ratio, and each
pattern (corresponds to a certain traffic lane) is modelled by a mono-Gaussian distribution. The Gaussian
distribution parameters of tension ratio are used as condition indicator of stay cables because they are
only related to cable conditions (the information of vehicle transverse location is presented in the num-
ber of tension ration patterns). The number of patterns which represents the model complexity are deter-
mined by Bayesian Information Criteria (BIC), while other parameters of GMM are estimated by using
Expectation-Maximization algorithm under the Maximum Likelihood criteria, based on the monitored
cable tension force. The cable condition is then evaluated according to the variation in estimated param-
eters of GMM. It is noted that pre-process of source separation is conducted to make the cable tension
ratio independent from vehicle weight, environmental variant, and possible sensor errors. An FE model
analysis is carried out to qualitatively illustrate the principle of the proposed method and physical sense
of the cable tension ratio.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Cables, including stay cables and suspenders, are critical and
vulnerable types of structural components in long-span cable-
supported bridges. From 1970 to 1990, 48% of more than 30
cable-stayed bridges built in mainland China had been reinforced,
repaired or even removed due to cable deterioration, and a total
average life-span of 11.8 years for 56 bridges was reported [1]. In
recent years, more than 10 catastrophic arch bridge accidents were
caused by the breakage of suspendors [2–4]. Therefore, there is an
urgent need to adopt effective techniques to monitor and assess
the condition and serviceability of bridge cables or suspendors.

As a result, Structural Health Monitoring (SHM) technologies,
which can provide condition information and maintenance sugges-
tions, have attracted the interest of researchers, engineer and man-
agers worldwide, and a number of bridges have been implemented
with structural health monitoring systems around the world [1–4].

Because cables are the main supporting components of
long-span bridges, cable tension acts as one of the most important
structural health indicators, and monitoring the cable tension in a
long-term SHM system is critical [5–8]. Two main types [7–9] of
monitoring techniques for stay cable tension force have been
developed, one is to monitor the strain of a few of steel wires in
a cable, the other is to monitor the total cable tension force (includ-
ing by using the load cells, the accelerometers, and the magnetic
flux sensors). The strain gauge can only monitor the strain of wires
with strain gauge, while it cannot measure the strain of other steel
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wires and is very difficult to survive during the installation process.
The accelerometers and magnetic flux sensors can only monitor
the quasi-static cable tension force. The load cell can monitor the
time-variant cable tension force; therefore, it is used for condition
assessment in this study. However, the raw data from the analysis
of cable tension can hardly be used as the sole condition indicator
of cables directly because cable tension is also affected by external
loading, environmental effects, material deterioration, noise and
sensor zero-shift [1]. Therefore, an indicator which is only respon-
sive to cable condition and is independent from external loads,
environmental effects and zero-shifting of sensors is needed. A log-
ical way to handle this is to decompose the raw tension data into
individual components and treat them individually. The environ-
ment effects on cable tension have been investigated [10–12].
However, the vehicle-induced cable tension force, which domi-
nates the variation of cable tension force, has not been comprehen-
sively studied, except for fatigue damage estimation [9].

Since the 1960s, the use of pattern recognition has significantly
increased. A number of algorithms have been proposed in applied
mathematics, computer science, and many other cross-disciplines
and forms a branch of artificial intelligence [13]. Pattern recogni-
tion approaches are used for pattern extraction or knowledge dis-
covery from big data [14]. Farrar et al. [15] recognised that
vibration-based damage detection is fundamentally one of the
main statistical pattern recognition (SPR) problems and can be
studied by machine learning methods. Years later, Farrar and Wor-
den [16] outlined the framework of this type of approach as a type
of data-driven methodology.

Worden and Manson [17] defined data-driven approaches for
damage identification by establishing a model that statistically
represents the system, and the model was expressed as a probabil-
ity density function; they argue that at least three levels of damage
identification (i.e., detection, localization, and assessment, the
fourth level is prediction) can be addressed by employing this
approach. Gul and Catbas [18] proposed a modified algorithm of
an auto-regressive model combined with the Mahalanobis distance
for outlier analysis, and successfully identified the boundary condi-
tion changes while not equally successful in reduced stiffness cases
for a laboratory steel grid structure. Figueiredo, et al. [19] devel-
oped four different machine learning algorithms (i.e., auto-
associative neural network, factor analysis, Mahalanobis distance
(MSD-), and singular value decomposition) on their effectiveness
in the damage detection of a base-excited frame model under vary-
ing simulated operational and environmental conditions, AR
parameters are used as input features, and MSD-algorithm proved
to be a better choice, the variety of the input dataset has also been
emphasized. Yang and Nagarajaiah developed a classification
framework based on the sparse representation and compressed
sensing for damage identification, modal feature is extracted by
complexity pursuit (CP) algorithm and sparsity property of damage
is used, the proposed method was argued effective in damage
localization and assessment by a laboratory beam structure test
[20–22]. Catbas, et al. [23] presented a correlation-based and non-
parametric method for damage detection. Figueiredo, et al. [24]
proposed a Bayesian approach for damage detection of bridges
based on modal frequencies, in which the parameters are esti-
mated by Markov-chain Monte Carlo methods, this approach was
validated by identifying the damage done to the Z24 Bridge in
Switzerland, and Gaussian distributions are find effective in repre-
senting different function conditions.

Pattern recognition algorithms can usually be divided into two
categories, i.e., supervised algorithms that require a labelled data-
set (i.e., a dataset obtained from structures with known damage/
health conditions), and unsupervised algorithms that do not need
a labelled dataset (i.e., a dataset obtained from structures with

unknown damage/health conditions). However, most of the afore-
mentioned damage detection practices based on pattern recogni-
tion are supervised algorithms, meaning that the damage
identification is limited to the experimental or simulated condi-
tions [18,19,21] or simple-supported and short-span bridges with
known conditions (e.g., the Sunrise Boulevard bridge in Florida
[23] and the Z24 bridge in Switzerland [24]). In contrast, unsuper-
vised algorithms are mostly employed for data outlier analysis in
civil engineering, as it is difficult to localize and quantify the poten-
tial damage [16]. Although successes in damage detection have
been reported in the aforementioned studies, damage-insensitive
and environmentally sensitive properties and the damage detec-
tion aim have narrowed the scope of SHM and limited full use of
the monitored data in terms of achieving deep insight into the
in-situ structure behaviour [25,26].

In this study, the cable tension ratio of a pair of cables is first
extracted as a feature variable. We then propose a pattern recogni-
tion paradigm for condition assessment of stay cables based on
cable tension ratio. Tension ratio patterns are modelled by GMM
and each pattern corresponds to a mono-Gaussian distribution. It
is found that the GMM parameters are related to cable condition.
Therefore, variation in pattern parameters (i.e. GMM parameters)
implies the change in condition of stay cables. Pattern number is
determined by BIC criterion and other GMM parameters are esti-
mated by Expectation-Maximum (EM) algorithm. Source separa-
tion is conducted in pre-processing to obtain the vehicle-induced
cable tension force data and eliminate sensor zero-shift error and
environmental variation, tension ratio is then calculated. A case
study on a real long-span cable bridge is conducted, and an FE
model analysis is carried out for a qualitive illustration of the pro-
posed method.

2. Pattern recognition paradigm of the tension ratio

2.1. Definition of tension ratio

In this study, the cable tension ratio, 1, i.e., the ratio of moni-
tored upriver and opposite downriver vehicle-induced cable ten-
sion (vehicle-induced cable tension pairs) is defined as the
feature of cluster. Supposing that only one heavy truck travels in
a certain lane of a cable-supported bridge at a certain time, the
vehicle-induced cable tension pair can be written as follows

Tvu ¼ Fgvuðx; yÞ Tvd ¼ Fgvdðx; yÞ ð1Þ

where Tvu and Tvd represent the vehicle-induced cable tension of the
upriver cable and the opposite downriver cable, respectively; F is the
equivalent force of the vehicle load under the assumption of equiv-
alent concentrated force of vehicle and the vehicle-bridge interac-
tion can be neglected in long-span bridges [27]; x and y are the
longitudinal and transverse vehicle load positions with the concen-
trated assumption, respectively; gvuðx; yÞ and gvdðx; yÞ denote the
cable tension influence surface under vehicle loading, which are
functions of structural properties and the load location (x, y) and
independent from the vehicle load weight. Moreover, these factors
are usually assumed to be independent of x in codes [28]:
gvuðx; yÞ ¼ gvuðxÞ � gvuðyÞ and gvdðx; yÞ ¼ gvdðxÞ � gvdðyÞ; gvuðxÞ;gvdðxÞ
form the so-called influence line longitudinally, and gvuðyÞ;gvdðyÞ
form the influence line transversally (or in another term: the trans-
verse distribution coefficients). Because the longitudinal location x
of the vehicle to the cable pair are identical (gvuðxÞ ¼ gvd) for the
cables on the upper river side and downriver side, Eq. (1) yields to
Eq. (2) with a noise term b representing the possible model error
due to the effects of vehicles on the other traffic lanes, the vehicle-
bridge interaction, etc.
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