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A B S T R A C T

Accurate predictions of physically nonlinear elastic behaviors of a material point in the structure are essential to
the further analyses which are beyond the linear elasticity regime, for example, the progressive damage and the
failure. In light of substantial experimental evidence of nonlinear shear stress-strain responses in composites, it is
necessary to consider them in the structure-level simulations rigorously. A variational asymptotic beam model is
developed for this purpose. The three-dimensional continuum is rigorously reduced to a two-dimensional cross-
sectional analysis and a one-dimensional Euler-Bernoulli beam analysis. The original three-dimensional con-
tinuum features material nonlinearities in longitudinal shear. The unknown cross-sectional warping is solved by
finite element method using the principle of virtual work. Nonlinear beam constitutive relation and three-di-
mensional stress and strain fields are obtained.

1. Introduction

Fiber-reinforced plastic composites (FRP) exhibit physically non-
linear behaviors in both elastic and inelastic regions. The primary cause
of the elastic nonlinearity has been discovered to be the lamina shear
stresses once they are relatively large compared to the longitudinal
tensile stresses. In this situation, the resin matrix dominates in the
mechanical performance of the composites. Consequently, because the
shear stress-strain responses of polymer resins are nonlinear over the
entire strain range and at very low strain levels, the in-plane shear re-
sponses of FRP plies are nonlinear over the entire range examined [1].

Several mathematical models have been published to describe the
nonlinear stress-strain responses. A widely used example of these
models are developed by Hahn and Tsai [2] by employing a plane-stress
complementary energy function which contains a biquadratic term for
in-plane shear stress. Stress field predicted by such a constitutive law is
used to formulate the failure criterions which are successful in pre-
dicting the failure due to stress concentrations [3,4]. Another widely
used model is the Ramberg-Osgood equation [5] which is also popular
in metal fatigue studies. A more flexible description methodology is to
utilize mathematical curve fitting functions [6–8]. A comprehensive
review of the nonlinear constitutive models for shear nonlinearity can
be found in [9].

The focus of this paper is not to just provide another method to
describe the nonlinear shear stress-strain law but to bridge the

theoretical gap between the physically nonlinear laws and the me-
chanics of slender solid made of the materials which are governed by
these laws. We have two main motivations for this study. Firstly, the
knowledge of the nonlinear shear stress-strain response of the compo-
sites can be obtained from the measurements of loaded slender cou-
pons. For example, the ASTM D3518/D3518M Standard Test Method
[10] for “in-plane shear response of polymer matrix composite mate-
rials by the tensile test of ± °45 laminate” is based on the measured
uniaxial force-strain response of a symmetrically ± °45 -laminated
coupon. A rigorous beam model can serve as a virtual coupon to relate
the uniaxial force-strain response precisely with the three-dimensional
(3D) stress and strain fields by the cross-sectional analysis. Conse-
quently, the beam model can be used along with the data matching
tools to calibrate the material constants built into the material de-
scriptions. Secondly, the nonlinear in-plane shear responses have im-
pacts on the one-dimensional (1D) constitutive responses of beams.
Predictions of static failure loads and natural frequencies of composite
beams are affected by the predefined 3D nonlinear stress-strain laws.

A substantial amount of work has been devoted to model composite
beams. The conventional beam theories adopt the ad hoc assumptions,
for example, the cross section remains rigid in its own plane and pos-
sesses uniaxial stress state, have limited their generality and accuracy in
predicting the behavior of composite beams. An advanced theory
should be free from the limitation of unnecessary kinematic assump-
tions and minimize the information loss from the original 3D model.
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The variable kinematic model, known as the Carrera Unified
Formulation (CUF) [11], permits one to develop a structural model with
a variable number of displacement unknowns in a hierarchical manner.
Another systematic approach for modeling composite beams has been
developed by Hodges and his co-workers during the last three decades
[12–17]. This approach uses the Variational Asymptotic Method (VAM)
[18] to rigorously split the original 3D geometrically nonlinear and
materially linear problem of the slender structure into a 1D global beam
analysis and a two-dimensional (2D) cross-sectional analysis. The 2D
cross-sectional analysis is called Variational Asymptotic Beam Sectional
Analysis (VABS). The advantageous feature of this approach is that the
resulting beam models are still in the form of simple engineering
models such as the Euler-Bernoulli beam model or the Timoshenko
beam model without the ad hoc assumptions such as that the plane
cross section remains plane associated with these models. VABS pro-
vides the constitutive relations needed for the global 1D beam analysis
and computes the pointwise fields (such as stress and strain) within the
original 3D structure based on the global beam behavior. The nonlinear
elasticity is studied in VABS framework firstly by assuming nonlinear
strain definition (Green strain in St-Venant/Kirchoff model) to examine
the trapeze effect for strip-like beams [19]. Jiang, Yu, and Hodges ex-
tended the VABS theory to deal with various types of hyperelastic
material both analytically [20] and numerically [21]. The motivations
to use VABS instead of 3D FEA is the computational efficiency, nu-
merical stability, coupon constitutive relation representative, and
flexibility for complex composite mold profile.

In the present work, VABS is extended to model the physically
nonlinear beams. In light of releasing the small warping assumption to
the finite warping, the nonlinear product terms of the warping and
curvatures are retained in the strain formulation. The theoretical
foundation of VABS is updated from minimizing the strain energy to the
principle of virtual work. Newton-Raphson method is utilized to solve
for the converged warping solution iteratively.

The Hahn-Tsai [2] nonlinear in-plane shear model is used for vali-
dation purpose by comparing the VABS results with those from 3D FEA.
Both static and dynamic examples are given. The ± °45 -laminated
coupon tensile tests are simulated. 3D local fields such as the free-edge
stresses are precisely captured by the present model. Nominal stress-
strain curves predicted for various composite beams with different
cross-sections are compared to show the impact of the cross-sectional
designs of the coupons on their performances in calibrating the material
constants.

2. Variational asymptotic beam sectional analysis (VABS)

2.1. Theoretical formulation

In Fig. 1, ei for i = 1, 2, 3 are fixed dextral, mutually perpendicular
unit vectors in the absolute reference frame, and r0 and R0 denote the
position vector of the material point on the reference line of the un-
deformed and deformed configurations, respectively. bi and Bi are the

orthogonal triads attached to the cross-section in the undeformed and
deformed configurations, respectively. Here and through all the paper,
expect where explicitly indicated, Greek index α assumes values 2 and
3, whereas Latin indices (i j k l m n p, , , , , , , and q) assume values 1, 2, and
3. Repeated indices are summed over their range except where ex-
plicitly indicated.

The material position vectors in the undeformed and deformed
beam body can be expressed as

= +r r bxα α0 (1)

= + +R R B Bx w x x x( , , )α α i i0 1 2 3 (2)

with wi representing the 3D unknown warping functions to describe the
difference between the position of deformed body and those can be
described by deformation of the reference curve x1 in terms of

+R Bxα α0 . R0 can also be expressed as

= +R r u0 0 (3)

where u denotes the beam displacement. Note u is not the displacement
of some material point in the original structure. Rather it is the dis-
placement field of the beam model (points on the beam reference line)
we are constructing. In Eq. (2), we actually express R in terms of R B, i0 ,
and wi, which is six times redundant. Six constraints are needed to
ensure a unique mapping. We can choose B1 to be tangent to the de-
formed reference line which introduces two constraints since we are
building a model of Euler-Bernoulli type. As discussed in [16], we can
also introduce the following four constraints for the warping functions:

〈 〉 = 〈 − 〉 =w w w0, 0i 2,3 3,2 (4)

From here and throughout the paper we assume a prismatic beam
with uniform cross-sectional geometry. To derive a theory of the clas-
sical (Euler-Bernoulli) type, we define the following generalized 1D
strains:

′ = +R Bγ(1 )0 1 (5)

′ = ×B B Bκi j j i (6)

in which the upper prime denotes derivative to x γ,1 the axial strain, κ1

the twist and κα the curvature of the deformed beam reference line. It is
noted that these definitions of beam strains have nothing related with
the well-known Euler-Bernoulli assumptions. Instead, we are con-
structing a model which is capable of capture extension (γ), torsion (κ1),
and bending in two directions (κα) with the possibility to capture all the
3D displacements, strains, and stresses due to these four fundamental
deformation modes allowed in the Euler-Bernoulli beam model without
apriori assuming that some components of the 3D fields vanish as most
other theories do.

In Fig. 1, gi denote the covariant base vectors of the undeformed
body. And let the controvariant base vectors of the undeformed body
denoted by gi. Then we have

= =g g bi
i i (7)

for prismatic beams. The covariant base vectors of the deformed con-
figuration can be evaluated as

= ∂
∂

G R
xk

k (8)

Together with Eq. (6), we have

= + + ′− + + +
+ ′− + +
+ ′ + + −

G B
B
B

γ w x w κ x w κ
w x w κ w κ
w x w κ w κ

[1 ( ) ( ) ]
[ ( ) ]
[ ( ) ]

1 1 2 2 3 3 3 2 1

2 3 3 1 1 3 2

3 2 2 1 1 2 3 (9)

= + + +G B B Bw w w(1 )2 1,2 1 2,2 2 3,2 3 (10)

= + + +G B B Bw w w(1 )3 1,3 1 2,3 2 3,3 3 (11)

Then the deformation gradient tensor can be formulated as the dyadicFig. 1. Schematic of undeformed and deformed beam.
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