
Contents lists available at ScienceDirect

Engineering Structures

journal homepage: www.elsevier.com/locate/engstruct

Complete generalization of the Ayrton-Perry formula for beam-column
buckling problems

József Szalai
ConSteel Solutions Ltd., 1095-Hungary, Budapest, Mester utca 87, Hungary

A R T I C L E I N F O

Keywords:
Ayrton-Perry formula
Steel beam-column member
Flexural buckling
Torsional buckling
Flexural-torsional buckling
Lateral-torsional buckling
Imperfection factor
Amplification factor
Second order forces
Overall stability design method

A B S T R A C T

The Ayrton-Perry (or Perry-Robertson) formula based stability resistance model (APF) is very popular in steel
structural design standards. Although the original version of the model is more than 100 years old, it is still
frequently used and continuously researched due to its simplicity and adaptability. The original and most widely
accepted version of the APF is valid only for the flexural buckling of compression members yielding the basic
formulation of the column buckling curves of several structural design codes. Recently there were more suc-
cessful attempts for the extension of the APF type resistance model for other buckling modes such as torsional
buckling or lateral-torsional buckling. The paper continues this research by deriving a complete closed-form
universal APF type solution for steel beam-column stability problems. Rigorous mathematical solution is given
for the so-called “fundamental case” which is defined by a simply supported prismatic beam-column with ar-
bitrary cross-section subjected to uniform compression and biaxial bending. The exact interpretation and the
universal form of the member slenderness, imperfection and reduction factors are presented for all possible
buckling cases. The results of the paper can widen significantly the field of applicability of APF based design
methods providing a theoretically consistent physical model for the beam-column stability problems.

1. Introduction

This paper discusses the theoretically exact derivation and the
consistent generalized forms of the Ayrton-Perry formula (APF) for
various steel beam-column stability problems. The original APF ana-
lytically defines the load carrying capacity of a geometrically imperfect
column subjected to pure compression. The formula is based on the
onset of yielding in the most compressed fibre calculated from the
elastic second order member forces [1]. This simple analytical model is
very suitable to describe the complex mechanical behavior of the
member buckling phenomenon and to calibrate conveniently to ex-
perimental or high level numerical results, as it is demonstrated in the
next section. Accordingly the APF has been adopted by several modern
structural standards as the basic design model for the buckling re-
sistance of steel members [2–5]. The first application for the purpose of
standardized structural design is dated back to the early British code [6]
in 1932, where supported by the experimental results of Robertson [7]
the APF was introduced for the design of compressed members. Later,
after the wide experimental and numerical program on column buck-
ling the European buckling curves were established by Beer and Schulz
[8] and finally the APF was used to model the multiple design buckling
curves of ECCS. The basic advantage of the APF is that it can be very
accurately calibrated to the experimental buckling curves by one

parameter only: the imperfection factor [9]. Up to this time the APF had
been used only for the modelling of flexural buckling of compression
members, the fundamental problem it had been originally developed
for. In 1991 it was the first time that the APF based model was proposed
for a different buckling problem: in [10] it was extended for lateral-
torsional buckling. However it should be noted that the authors in [10]
failed to consistently derive the APF for the lateral-torsional buckling
problem, thus the original form of column buckling was used and ca-
librated to experimental results. It is also important to see that the ECCS
column buckling curves – which were established almost 40 years ago –
are still unchanged and valid in the Eurocode 3 [2] and in many other
design codes and proved to be accurate according to several in-
vestigations during this time. The standard design model for lateral-
torsional buckling has however been modified in the later version of the
Eurocode 3 [2] and is still under research due to lack of proper con-
sistency and accuracy. The main reason for this is the lack of theoretical
derivation behind the valid design formula, which reveals the sig-
nificance of a consistent mechanical background for the proper buck-
ling problem. This was recognized by Chapman and Buhagiar who first
derived the theoretically consistent APF for different problem than
flexural buckling of compressed members: it was the torsional and
flexural-torsional buckling of thin-walled members subjected to com-
pression [11]. Later Szalai and Papp developed the theoretically
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consistent APF for the case of lateral-torsional buckling of beams [12]
considering the buckling mode for the shape of the initial geometrical
imperfections. In this work the necessary conditions were established
for the consistent generalization of the APF for beam-column buckling
problems. Based on these findings in [12] the APF was derived for the
lateral-torsional buckling of beam-columns subjected to compression
and bending considering constant compression effect. Naumes at al.
[13] also applied the APF to beam-columns modelling the compressed
flange as an equivalent column, and they proposed an approximate
solution for non-uniform members and loading as well. Applying a si-
milar approach recently the APF was also used to develop design model
for tapered columns [14] and beams [15]. More recently a completely
validated and verified new design method was proposed for the APF

based resistance calculation of beam-columns [16] subjected to major
axis bending and compression.

Extension of the applicability of the APF is consequently useful
when creating new design methods for further, specific buckling pro-
blems. The main objective of the paper is however to develop a con-
sistent mechanical background for a new buckling design approach
based on the overall elastic critical buckling analysis of complete
structural models [17]. This new design approach is referred to as
Overall Stability Design Method (OSDM) in this paper. The basic idea of
OSDM is that it no longer separates the pure loading and buckling
modes of the generally loaded members – for instance the compression
and bending corresponding to flexural and lateral-torsional buckling
modes – but considers the complex loads and forces evaluating the

Nomenclature

Matrix-vector notations

A linear operator representing the second order stiffness
matrix

Aalt alternative form of A for doubly symmetric cross-sections
D linear differential operator representing the first order

stiffness matrix
D0 zero order part of D
D2 second order part of D
F external force vector
R resistance force vector
S internal force vector
SActive

I active part of the first order internal force vector
Spassive

I passive part of the first order internal force vector
SΔ Load

II second order internal force vector increment from applied
loads only

SΔ Imp
II second order internal force vector increment from im-

perfection only
U displacement vector
U1 second order displacement vector due to the applied loads

only
U2 second order displacement vector increment due to the

imperfection only
U tot

2 total second order displacement vector due to the im-
perfection only ( +U U0 2)

U0 geometrical imperfection vector identical to a buckling
mode of the system

Roman letters

A cross-section area
B internal bimoment
Bsec bimoment resistance of the cross-section
E elastic modulus
e0 lateral deflection of the compressed flange as geometric

imperfection component
fy yield stress
G shear modulus
h height of the doubly-symmetric cross-section
Iy, Iz second moment of inertia about the strong and weak axis
Iw warping moment of inertia
It St. Venant torsional constant
M M,y z external or internal strong and weak axis bending moment
M M,y sec z sec, , strong and weak axis bending moment resistance of the

cross-section
Mcr elastic critical bending moment for pure lateral-torsional

buckling
N external or internal compression force

Nsec compression force resistance of the cross-section
Ncr,x elastic critical compression force for pure torsional buck-

ling
Ncr,y elastic critical compression force for pure strong axis

flexural buckling
Ncr,z elastic critical compression force for pure weak axis flex-

ural buckling
r0 radius of gyration
x,y,z longitudinal centroidal, strong and weak axis of the

member
y0,z0 position of the shear center in the principal centroidal

system
u,v,w longitudinal, strong and weak axis displacement compo-

nent
u0,v0,w0 longitudinal, strong and weak axis geometrical imperfec-

tion component
Wy, Wz section moduli about the strong and weak axis (can be

elastic or plastic)
Ww warping section moduli (can be elastic or plastic)

Greek letters

αcr elastic critical load multiplication factor
αsec first order cross-section capacity load multiplication factor
α α,sec a sec p, , first order cross-section capacity load multiplication factor

for the active and passive loads respectively
α α α, ,sec N sec My sec Mz, , , first order cross-section capacity load multi-

plication factor for the pure compression, strong and weak
axis bending

αsec modified cross-section capacity load multiplication factor
αb buckling resistance load multiplication factor
βy,βz parameters of monosymmetry for the strong axis and weak

axis asymmetry respectively
η generalized imperfection factor
η alternative form of the generalized imperfection factor
λ generalized slenderness factor
λz generalized slenderness factor for weak axis flexural

buckling
λy generalized slenderness factor for strong axis flexural

buckling
λLT generalized slenderness factor for lateral-torsional buck-

ling
μ interaction parameter in the generalized imperfection

factor
χ generalized buckling reduction factor
φ rotation about the longitudinal axis displacement compo-

nent
φ0 rotation about the longitudinal axis geometrical im-

perfection component
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