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a b s t r a c t

The objective of this study is to develop an effective numerical model within the framework of an isoge-
ometric analysis (IGA) to investigate the geometrically nonlinear responses of functionally graded (FG)
microplates subjected to static and dynamic loadings. The size effect is captured based on the modified
strain gradient theory with three length scale parameters. The third-order shear deformation plate theory
is adopted to represent the kinematics of plates, while the geometric nonlinearity is accounted based on
the von Kármán assumption. Moreover, the variations of material phrases through the plate thickness fol-
low the rule of mixture. By using Hamilton’s principle, the governing equation of motion is derived and
then discretized based on the IGA technique, which tailors the non-uniform rational B-splines (NURBS)
basis functions as interpolation functions to fulfil the C2-continuity requirement. The nonlinear equations
are solved by the Newmark’s time integration scheme with Newton-Raphson iterative procedure. Various
examples are also presented to study the influences of size effect, material variations, boundary condi-
tions and shear deformation on the nonlinear behaviour of FG microplates.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, there has been a considerable increase in
research and applications of functionally graded materials (FGMs)
in various engineering fields. FGMs are categorized as a class of
composite materials [1] since they are constituted from two or
more phrases of distinct materials. Those constituent materials in
FGMs are varied intentionally and continuously through a pre-
scribed dimension, and hence there is no stress concentration as
observed in conventional laminated composites. Ceramic and
metal constituents are the most common material phrases from
which FGMs are commonly made. In general, the ceramic con-
stituent has a strong capability to withstand a high-temperature
effect, whereas the metal counterpart is able to exhibit robust
mechanical properties due to its ductility. By combining those con-

stituents with smooth variations of their volume fractions, the
preferable mechanical characteristics of both materials are
obtained in a unique structure. Thanks to this distinguishing fea-
ture, it is no doubt that FGMs have also been studied for applica-
tions in cutting-edge devices [2] in which microbeams and
microplates are fundamental components. In the mechanical point
of view, the behaviour of such microstructures is considerably
influenced by the size effect as indicated in various experimental
investigations [3–5]. In addition, it was pointed out that the classi-
cal elasticity theory is incapable of predicting accurately the
responses of the small-scale structures. This is due to the fact that
the classical elasticity theory lacks a so-called length scale param-
eter, which is used to capture the size effect. To deal with this
shortage, a number of non-classical continuum theories were pro-
posed in the open literature, such as the strain gradient theory of
Mindlin [6], the nonlocal elasticity theory of Eringen [7], the non-
local strain gradient theory [8], the modified couple stress theory
(MCT) of Yang et al. [9] and the modified strain gradient elasticity
theory (MST) of Lam et al. [10]. The adoption of those theories to
study the behaviour of small-scale structures could be found in
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various studies on nano/microbeams [11–17] nano/microplates
[18–28] or nanoshells [29–31]. A critical review of recent research
on the application of nonclassical continuum theories for predict-
ing the size-dependent behaviour of small-scale structures can
be also found in [32].

Based on the MST, a number of size-dependent models have
been developed to predict the responses of microplates on the
basis of various kinematic models, such as classical plate theory
[33–37], first-order shear deformation theory [38–43] and
higher-order shear deformation theories [44–47]. However, these
aforementioned works are limited to analytical or semi-analytical
methods, which are only applicable to simple problems with cer-
tain geometry and boundary and loading conditions. For example,
Wang et al. [33], Sahmani and Ansari [44], Gholami et al. [40],
Zhang et al. [41,46] and Akgoz and Civalek [47] employed Navier
method to derive analytical solutions of rectangular microplates
with simply supported boundary conditions, whilst Mohammadi
and Fooladi Mahani [35] and Mohammadi et al. [36] used Levy
method to derive analytical solutions of rectangular microplates
in which two opposite edges are simply supported and the reman-
ing two edges can have arbitrary boundary conditions. The beha-
viour of microplates with various boundary conditions were also
studied using semi-analytical methods such as the differential
quadrature method [38,39,42,45,43] and the extended Kantorovich
method [34,37]. For the practical problems with complex geome-
tries, loadings and boundary conditions, the application of analyt-
ical methods to solve such problems is impossible due to the
mathematical complexity of the MST plate models. Therefore,
numerical approaches such as finite element method, finite strip
method, Ritz method become the most suitable candidates for
solving such problems. However, the adoption of classical and
high-order shear deformation theories would pose an obstacle
for the traditional finite element method as they require a continu-
ity of interpolation functions over the element boundaries. This
difficulty is naturally and efficiently handled by using the IGA tech-
nique [48], in which the NURBS basis functions are not only
smooth and highly continuous but also able to present exact
geometries of some conical objects [49–52].

Although numerical solutions of the MST models have been
recently developed using Chebyshev-Ritz method [53], the finite
strip method [54] and the IGAmethod [55], these studies were lim-
ited to linear problems (linear bending [55], linear buckling [54]
and linear free vibration [53,54]). In fact, the behaviour of micro-
plates could undergo large deformations when heavier loads are
imposed. Therefore, the geometrical nonlinearity should be consid-
ered in the analyses of microplates. However, no literature has
been reported for the nonlinear analysis of FG micropaltes based
on the MST except a recent study on post-buckling of microplates
conducted by Thai et al. [56]. Therefore, the aim of this paper is to
propose an effective numerical approach to predict the geometri-
cally nonlinear responses of FG microplates based on the MST
and the IGA approach. The displacement field is based on the
third-order shear deformation theory of Reddy [57], while the geo-
metrical nonlinearity is accounted by adopting the von Kármán
assumption. Hamilton’s principle is utilized to construct the weak
form of the equation of motion. In addition, the NURBS basis
functions are employed as interpolation functions to satisfy the
C2-continuity requirement in the discretization process. The New-
mark’s integration scheme in conjunction with Newton-Raphson
iterative procedure is adopted for the nonlinear static and dynamic
analysis. Verification studies are also performed to prove the accu-
racy of the present approach. The influences of the size effect,
material gradient indices, boundary conditions and thickness
ratios on the nonlinear responses of FG microplates are firstly
investigated through various parametric studies.

2. Plate formulations

2.1. Material properties of FGMs

As described in Fig. 1, the in-plane coordinates x and y are
located in the midplane X of the plate having the thickness of h,
while the z-axis is normal to the midplane. According to the rule
of mixture, the variation of material properties throughout the
plate thickness is expressed by

P zð Þ ¼ Pc � Pmð Þ z
h
þ 1
2

� �n

þ Pm ð1Þ

where PðzÞ is a typical material property, such as Young’s modulus
EðzÞ, Poisson’s ratio mðzÞ, density qðzÞ. Pc and Pm represent the prop-
erties of ceramic and metal surfaces, respectively, and the gradient
index n is used to describe the profile of material variation. It can be
seen that a single ceramic or metal plate is obtained when the gra-
dient index n is prescribed as 0 or 1.

2.2. Modified strain gradient theory

Based on the MST proposed by Lam et al. [10], the virtual strain
energy stored in an elastic body is expressed as

dU ¼
Z
V

rijdeij þ pid1i þ s 1ð Þ
ijk dg

1ð Þ
ijk þms

ijdv
s
ij

� �
dV ð2Þ

where the classical stress and high-order stresses are given as
follows

rij ¼ 2leij þ kekkdij; pi ¼ 2ll201i; s 1ð Þ
ijk ¼ 2ll21g

1ð Þ
ijk ; ms

ij ¼ 2ll22v
s
ij

ð3Þ
in which l0, l1 and l2 are the material length scale parameters. k and
l denote the Lamé constants:

k ¼ mEðzÞ
1þ mðzÞ½ � 1� 2mðzÞ½ � ; l ¼ EðzÞ

2 1þ mðzÞ½ � ð4Þ

The classical strain tensor eij and high-order strain gradient tensors,
namely the dilatation gradient tensor fi, the deviatoric stretch gra-

dient tensor g 1ð Þ
ijk and the symmetric part of rotation gradient tensor

vs
ij, are given as follows

eij ¼ 1
2

ui;j þ uj;i þ um;ium;j
� �

; ð5aÞ

1i ¼ emm;i ð5bÞ

g 1ð Þ
ijk ¼ gs

ijk �
1
5

dijgs
mmk þ djkgs

mml þ dkigs
mmj

� �
;

gs
ijk ¼

1
3

ui;jk þ uj;ki þ uk;ij

� � ð5cÞ

vs
ij ¼

1
4

eimnun;mj þ ejmnun;mi
� � ð5dÞ

where ui denote the components of displacement vector, dij and eijk
are the Kronocker delta and permutation symbol, respectively.

2.3. Kinematics

The displacement field according to the third-order shear defor-
mation plate theory [57] is expressed as follows

u1 ¼ uþ f zð Þhx � g zð Þw;x

u2 ¼ v þ f zð Þhy � g zð Þw;y

u3 ¼ w

ð6Þ
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