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A B S T R A C T

Although the direct Monte Carlo simulation (MCS) method can estimate the seismic failure probability accu-
rately, it is inefficient when small failure probabilities are of interest, and especially so if finite element transient
analysis is required. For seismic reliability assessment of practical complex structure with large number of
random parameters and small failure probability, a hybrid approach which combines subset simulation (SS),
explicit time domain method (ETDM) and back propagation neural network (BPNN), is proposed herein. In this
methodology, SS with modified Metropolis-Hastings (MMH) algorithm reduces the number of simulation sam-
ples required to estimate the failure probability; the use of ETDM with BPNN technique in lieu of many repeated
finite element transient analysis reduces the computational effort for each realization dramatically. It should be
emphasized that the separate treatment of uncertain structural and earthquake load parameters having low and
high variabilities make the presented method successful. The seismic reliability analyses of an in-service self-
anchored suspension bridge (modeled using a 15,530 nodes and 20,875 elements) with 31 random parameters
subjected to earthquake motion are performed to illustrate the comparable much higher efficiency of the pro-
posed method (especially for low failure probability cases) compared to using the direct Monte Carlo simulation
(MCS). In terms of computational efficiency, if the suspension bridge has a failure probability of 1.0 × 10−3 and
a COV of less than 0.3 is desired, the direct MCS requires 12,000 simulations, which will take about 250 days
using a notebook with i5-core. The proposed hybrid approach only needs 18 days, which includes the FE analysis
to obtain expressions for impulse response matrix through BPNN and three levels in the SS.

1. Introduction

For large scale engineering structures, evaluating their perfor-
mances under seismic conditions is a necessary step and the determi-
nistic approach is often taken for reasons of simplicity and minimal
computational effort. However, to obtain a more complete evaluation,
the existence of uncertainties such as those associated with structural
parameters including material characteristics as well as load conditions
must be accounted for in the analysis [1–3]. There are limited works
published or actual computation performed on the seismic reliability of
real large scale engineering structures, especially bridges, due to its
complexity and lengthy computation [4–9].

The straightforward approach to reliability analysis of large scale
structures like bridges is to perform direct Monte Carlo simulation
(MCS) to obtain an accurate estimate of the failure probability. This
method provides results for reference purpose rather than for per-
forming all cases of interest due to the volume of computation needed
especially for real engineering structures [10]. The latter involves not

only thousands of repeated structural analyses, but in cases involving
rare events and nonlinear dynamics, the effort is exponentially for-
midable. Methods which can reduce the number of sample points re-
quired, such as through advanced sampling techniques, and shorten the
computation effort of the nonlinear dynamic finite element (FE) ana-
lysis, are needed.

Several variance reduction based strategies have been developed to
reduce the simulation samples, such as importance sampling and line
sampling [10–12]. The basic concept is the choose a new sampling
distribution to generate samples leading to failure occurring more fre-
quently on a conditioned domain. This has been illustrated to be fea-
sible for problems involving low number of random parameters but the
choice of an appropriate sampling distribution is by no means easy
[10,13]. To address this limitation, Au and Beck [11] proposed the
subset simulation (SS) method which decomposed a rare failure event
into several conditional events with relatively higher occurrence fre-
quency. To generate the samples at the conditional event level, the
Markov chain Monte Carlo (MCMC) simulation and Metropolis-
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Hastings (MH) algorithm are adopted [11,14,15]. The advantage of this
sampling method is that the target distribution need not to be known
fully and the samples under the conditional event level could be gen-
erated without prior knowledge of the failure probability. The dis-
advantage is the relatively high coefficient of variation (COV), used as a
measurement criteria of the error of estimator, leading to frequent
‘repeated’ samples. Hence, the modified MH (MMH) algorithm was
proposed subsequently to reduce the COV [14,15] through modifying
the rejection rate of the pre-candidate sample generated by proposed
PDF. From step c of Appendix A, in MMH, all the generated candidate
samples satisfy the acceptance condition and are only rejected in step d
if lying outside the limitation region. While in original MH, the rejec-
tion starts at step c and this operation of frequent rejection obviously
increases the appearance of ‘repeated’ samples which causes the high
correlation between the generated Markov chain samples.

Although SS has been employed to reduce the amount of samples,
but the finite element analysis still needs to be performed for each
sample, the calculation effort is formidable as usual. The natural way to
shorten the computation time for repeated finite element analyses is to
use approximation methods, of which meta model approach such as
employing neural network (NN) has been successfully implemented
together with MCS to estimate the failure probability [13]. Simply
speaking, meta model is an explicitly mathematical expression, con-
structing the relationship between parameters and interested perfor-
mances (e.g. response) and replacing performing the FE analysis. Due to
the high nonlinear relationship between parameters and structural re-
sponses, NN meta model which has more fitting ability and efficiency
compared to traditional meta model like polynomial expressions was
employed. But such method has proven to be accurate for problems
with random parameters having low coefficients of variation and may
not work well if the parameters have high variability [16,17]. For ex-
ample, in dealing with meta models between parameters (including the
structural and random earthquake load parameters) and random
seismic performances, using this technique may not be able to produce
accurate relationships considering all the parameters together. Because
the structural parameters has low degree of randomness, but the
earthquake loads having parameters with high variability. This has not
been explicitly addressed.

To overcome this deficiency, this paper proposes to treat the two
classes of uncertain parameters (structural parameters and earthquake
load parameters) separately. For an ground acceleration time history
generated by earthquake load parameters, an explicit time domain
method (ETDM) [18,19] is adopted to obtain the seismic response
history. In ETDM, two unit impulse acceleration time history loads are
employed and the responses at each time instant of these two loads are
obtained by time domain FE analysis. Then the response of the structure
can be estimated by multiplying the coefficient matrix, where elements
at each column are responses of each time instant of impulse loads, with
the vector where the elements are acceleration load values of each time
instant. That means, for a deterministic structure, if there are one
thousand samples of random earthquake acceleration time history loads
generated by one thousand groups of earthquake load parameters, only
twice FE transient analyses are needed to obtain the responses of the
two impulse loads to form the coefficient matrix in ETDM, then the
responses of structure for each earthquake acceleration time history are
obtained by multiplying this matrix with corresponding acceleration
vector. Compared with conventional FE analysis, a total of one thou-
sand times of transient analyses are needed, which seems like a huge
project. But in seismic reliability analysis, not only the earthquake loads
are uncertain factors, but also are the structural parameters. Different
groups of structural parameters means different structural responses
under the same earthquake load. Hence, the coefficient matrix, namely
the responses of the two unit impulse loads, is based on the structural
parameters. To improve the calculation efficiency, the NN meta model
is employed by constructing explicit expressions between each element
in coefficient matrix and structural parameters. Then in the SS process,

for each parameter vector, the structure response is calculated by
multiplying coefficient matrix, obtained by the aforementioned explicit
expressions and structural parameters, with earthquake acceleration
vector, obtained by earthquake load parameters. Hence, there is no
need to perform numerous time domain finite element analyses.

In summary, this paper presents a more efficient hybrid method of
seismic reliability assessment for large scale structures, which is based
on the integrated use of the aforementioned ETDM, NN and SS. SS is
employed to reduce the simulation samples, and in the SS process, the
structural response can directly be obtained by ETDM, where the
coefficient matrix has been transferred to explicit expressions, trained
by NN technique, only having relationship with structural parameters.
The paper is organized as follows. Section 2 touches on the basics of SS,
ETDM, NN, non-stationary stochastic earthquake acceleration simula-
tion, as well as the procedure of the proposed hybrid approach. Section
3 demonstrates the detailed process and results of applying the hybrid
approach to the seismic reliability assessment of a self-anchored sus-
pension in-service bridge which is a complex and larger structure. The
conclusions are drawn in Section 4.

2. Hybrid method for seismic reliability assessment

2.1. Subset simulation with MMH algorithm

Seismic reliability of engineering structures is usually small failure
probability event and needs large amount of samples in analysis. But SS
method [11,13] divides a small failure probability event F into a se-
quence of m more frequently occurring conditional events, Fi, i=1, 2,
… ,m, such that ⊃ ⊃ … ⊃ =F F F F, , m1 2 . Thus this operation reduces the
number of samples greatly compared to direct MCS. The probability of
event F occurring can be expressed as

= … −P F P F P F F P F F P F F( ) ( ) ( | ) ( | ), , ( | )m m1 2 1 3 2 1 (1)

where P(F1) is the probability of event F1 occurring; and P(Fm|Fm−1)
represents the conditional failure probability. Each event Fi represents
the event {G(X) < ci}, where G(X) is the performance function value
with vector of random parameters X and ci is the intermediate threshold
for each level, which usually has a relationship of
c= cm < cm−1 < … < c1.

Usually, the number of samples in each subset level, N, is pre-de-
termined, such as 500 depending on the accuracy required, and a fixed
p is used as the failure probability for each level except the final level,
and ci is then determined as the (pN+1)-th smallest value of G X( )k

i( ) in
each level i, where Xk

i( ) =[xk1, xk2,… ,xkd], k=1, 2,… ,N is the number
of samples, i=1, 2,… ,m−1, d is the number of parameters. If the
(pN+1)-th smallest value of G X( )k

m( ) in level m is smaller than final
limitation c, it means this is the final conditional level and the SS
process ends. Hence, the estimator of P(F) is given by pm−1Pm, where
Pm= P(Fm|Fm−1). In practice, p is often set as 0.1 where researchers
have shown this to be efficient for failure probability up to 10−6

[11,14].
In the first conditional level of SS, the N samples are generated

according to the original PDF of each parameter and pN samples whose
performance function value lower than c1 are selected as so-called
seeds. For each seed, 1/p Markov chain samples need to be generated
according to proposal PDF of each parameter. The number of simula-
tion samples generated will be N, which will be used in conditional
level 2 simulation. Repeat the former process to generate N samples for
conditional level 3 to m. As to the selection of the proposal PDF, which
is suggested as a one-dimensional PDF with a symmetry characteristic
for each parameter, that is, =φ y x φ x y( | ) ( | )i i , where φ (·)i is the proposal
PDF and y, centered at x, is also a sample generated by x. To ensure the
efficiency of the Markov chain samples and generate samples over a
constrained domain, a uniformly distributed proposal PDF around the
seed has been suggested [13]. A typical procedure of generating sam-
ples for conditional level i with the aforementioned process using MMH
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