#### Engineering Structures 125 (2016) 107-123

Contents lists available at ScienceDirect

## **Engineering Structures**

journal homepage: www.elsevier.com/locate/engstruct



# Seismic performances and behaviour factor of wide-beam and deep-beam RC frames



### Fernando Gómez-Martínez<sup>a,b,\*</sup>, Adolfo Alonso-Durá<sup>b</sup>, Flavia De Luca<sup>c</sup>, Gerardo M. Verderame<sup>a</sup>

<sup>a</sup> Department of Structures for Engineering and Architecture, DIST, University of Naples Federico II, Via Claudio, 21, 80125 Naples, Italy <sup>b</sup> Department of Mechanics of the Continuum Media and Theory of Structures, Polytechnic University of Valencia, Camino de Vera, s/n, 46022 Valencia, Spain

<sup>c</sup> Department of Civil Engineering, University of Bristol, Queen's Building University Walk, BS8 1TR Bristol, UK

#### ARTICLE INFO

Article history: Received 24 June 2015 Revised 17 May 2016 Accepted 22 June 2016

Keywords: Wide beams Deep beams Seismic codes Behaviour factor Chord rotation Ductility Effective period Collapse mechanism

#### ABSTRACT

Reinforced Concrete Wide-Beam Frames (WBF) are a common architectural solution in Mediterranean countries. On this structural typology there is not yet a uniform approach among European codes: while Eurocode 8, as other relevant seismic codes in USA and New Zealand, considers WBF capable of high ductility performances, still in recent versions of Spanish and Italian seismic codes there is cap to the maximum behaviour factor (q) for this structural system. In order to verify the appropriateness of such provisions, seismic performances of WBF and conventional deep beam frames (DBF) are comparatively assessed through nonlinear static analyses. The same architectural layout of a typical European 5-storey RC housing unit is designed as WBF and DBF according to Eurocode 8, adopting different stiffness assumptions, and according to the Spanish seismic code NCSE-02. Based on detailed assessment results, a simplified parametric assessment of 72 frames designed according to Eurocode 8, Italian seismic code NCSE-02 is then considered assuming similar q for WBF and DBF. Results suggest that any reduction of behaviour factor prescribed for wide-beam frames is at least obsolete. In fact, even if wide beams show lower local ductility than deep beams, generally WBF provide at least similar global seismic capacities than DBF, especially in frames whose design is ruled by serviceability limit state (i.e., damage limitation).

© 2016 Elsevier Ltd. All rights reserved.

#### 1. Introduction

Traditionally, seismic codes have been quite cautious in allowing the use of wide-beam reinforced concrete frames (WBF) as the only lateral resisting system of buildings [1–12]. Conversely, more recent seismic codes do not make any explicit difference between WBF and conventional deep-beam frames (DBF) with the exception of some requirements on beam-column connections.

Still, some national seismic codes of the Mediterranean area, such us the Italian NTC [13] and the Spanish NCSE-02 [14], do not consider WBF as a system that can be designed in High Ductility Class (DCH). Thus, they prescribe lower behaviour factors (*q*, also called "strength reduction factor") for WBF with respect to DBF. On the contrary, Eurocode 8 part 1 [15] (EC8 in the following) does not prescribe any limitation to the behaviour factor of reinforced concrete (RC) WBF.

Reasons for limiting *q* in Mediterranean codes are not explicitly stated. Experimental and analytical background suggests that WBF may present some drawbacks when compared to DBF: (i) deficient stress transfer within connections, (ii) lower lateral stiffness and (iii) poorer energy dissipation in beams. However, recent literature studies [10,12] provide evidence that design provisions in modern seismic codes may overcome such deficiencies, directly or indirectly. Literature evidence on WBF is mainly based on experimental and analytical studies focusing on local structural behaviour [1-7,9,16-19]. Still, there is a lack of systematic studies addressing global performances of WBF against equivalent DBF fulfilling the requirements of different codes. Herein, a comparison of seismic assessment of both structural types is carried out. The final aim is to verify whether the whole framework of modern performance-based codes can balance the disadvantages of WBF with respect to DBF, and in which local context (if any) a reduction of *q* can be justified.

Diverse analytical studies regarding relative performances of WBF compared with DBF [1,3] show very similar performances for both types. However, these studies cannot be yet defined neither systematic nor generalizable. In [1], planar frames are



<sup>\*</sup> Corresponding author at: Department of Structures for Engineering and Architecture, DIST, University of Naples Federico II, Via Claudio, 21, 80125 Naples, Italy.

E-mail address: fergomar@mes.upv.es (F. Gómez-Martínez).

#### Nomenclature

| DB                 | deep beams                                              | PGAc             | capacity peak ground acceleration                           |
|--------------------|---------------------------------------------------------|------------------|-------------------------------------------------------------|
| DBF                | deep-beam reinforced concrete frames                    | $PGA_d$          | demand peak ground acceleration                             |
| DCH                | high ductility class                                    | q                | behaviour factor                                            |
| DCL                | low ductility class                                     | $\hat{R}_D$      | spectral contribution to q                                  |
| DCM                | medium ductility class                                  | $R_{s}$          | structural overstrength                                     |
| DLS                | damage limitation limit state                           | Ra               | structural overstrength from first vielding until global    |
| IDR                | interstorey drift ratio                                 | s.               | mechanism                                                   |
| ULS                | ultimate limit state                                    | Ru               | ductility strength reduction factor                         |
| WB                 | wide beams                                              | R                | structural overstrength until first vielding                |
| WBF                | wide-beam reinforced concrete frames                    | S                | soil amplification factor                                   |
| $a_{\sigma}$       | peak ground acceleration in soil type A                 | $S_a(T_{eff})$   | effective spectral acceleration demand                      |
| a <sub>aR</sub>    | reference peak ground acceleration in soil type A       | $S_{ae}(T)$      | design elastic spectral acceleration                        |
| b                  | beam gross section width                                | $S_{ae}(T)'$     | design equivalent elastic spectral acceleration after       |
| b                  | column width                                            | - 40 ( )         | corrections                                                 |
| bw                 | beam web width                                          | Sdu              | maximum spectral displacement capacity                      |
| $C_{P=\Lambda}$    | amplification factor accounting for P- $\Delta$ effects | $S_{dy}$         | vielding spectral displacement                              |
| $C_{s}$            | spectral acceleration capacity                          | SF               | structure global safety factor (capacity/demand)            |
| $d_{bi}$           | maximum beam bar diameter passing through the joint     | $T_{100\%FI}$    | design period for gross uncracked member stiffness          |
| $d_{bo}$           | maximum beam bar diameter passing outside the joint     | $T_{50\%EI}$     | design period for member stiffness 50% of the gross un-     |
| $d_c$              | maximum column bar diameter                             | JU/8LI           | cracked one                                                 |
| $D_{\mu}$          | top displacement capacity                               | Tcode            | simplified code design period                               |
| e                  | beam-column eccentricity                                | Teff             | effective period                                            |
| $E_{c}I_{c}$       | cross-sectional stiffness                               | $T_{el}$         | elastic period                                              |
| f <sub>ck</sub>    | concrete characteristic compressive strength            | Vd               | storey shear demand                                         |
| fconf              | confinement contribution to $\theta_{\mu}$              | $V_R$            | storey shear strength                                       |
| f <sub>K sec</sub> | ratio between the stiffness degradation of connections  | w                | portion of the beam width passing outside column core       |
| JAJOC              | in DBF with respect to WBF                              | Г                | first mode participation factor                             |
| $f_{\nu k}$        | steel characteristic yield strength                     | $\Delta K$       | relative interstorey difference of stiffness                |
| H                  | building height                                         | $\Delta m$       | relative interstorey difference of mass                     |
| $h_b$              | beam depth                                              | $\theta_{\mu}$   | ultimate chord rotation                                     |
| $h_c$              | column depth                                            | $\theta_{u,min}$ | minimum $\theta_u$ between members involved in the collapse |
| $h_{f}$            | upper slab tension flange thickness                     | ,                | mechanism                                                   |
| Н <sub>тес</sub>   | height of the building involved in the collapse mecha-  | $\theta_{ULS}$   | chord rotation capacity corresponding to the attainment     |
|                    | nism                                                    | 010              | of significant damage limit state                           |
| i                  | number of the storey                                    | $\theta_{\nu}$   | vielding chord rotation                                     |
| K <sub>eff</sub>   | effective stiffness                                     | λ                | normalised first mode participating mass                    |
| Kel                | elastic stiffness                                       | $\mu_{\theta}$   | chord rotation ductility                                    |
| L                  | member length                                           | v                | normalised axial load                                       |
| $L_V$              | shear span                                              | ρ                | bottom longitudinal reinforcement ratio                     |
| $M_{Rb}$           | moment resistance at beam end                           | ρ′               | top longitudinal reinforcement ratio                        |
| $M_{Rc}$           | moment resistance at column end                         | P <sub>tot</sub> | total longitudinal reinforcement ratio                      |
| n                  | number of storeys                                       | $\rho_w$         | transverse reinforcement ratio                              |
|                    | ·                                                       |                  |                                                             |

assessed, not buildings; and lower interstorey heights are used for WBF. In [3], the tested buildings have wide beams (WB) in the internal frames, deep beams (DB) in the external ones, and intermediate shear walls; thus, the collapse mechanism is not ruled by WB, making any comparison unfeasible. Moreover, both works use chord rotation values obtained from mix lumped plasticity and fibre models matching with their own experimental results, but not fitted to any larger database in accordance to the common approach employed in the last ten years among the scientific community, and adopted by recent codes. Some other analytical studies, corresponding to the Spanish framework, have been carried out [20–23]. Unfortunately, the last three works only focus on WBF, while, in the first study, WBF and DBF are designed to different q values, thus preventing any comparison for DCH.

Hence, the scope herein is to provide a systematic and generalizable analytical comparison of WBF and DBF performances. The latter is carried out through nonlinear static analyses of a building model designed alternatively with WB and DB, according to both EC8 and Spanish NCSE-02. The comparison is made for different design hypotheses and evaluating the consequences of the design assumptions on the nonlinear performances. Finally, simplified assessment of a parametric set of 72 frames representing residential buildings in Europe, corresponding to different codes (EC8, NTC and NCSE-02) is carried out in order to extrapolate and generalise the results obtained for the specific case study. Large-span WBF, as those typical in Australia and described in [8] or [16], are out of the scope of this paper.

#### 2. Code provisions on wide-beam frames

Due to historic uncertainties about the seismic performance of WBF, more restrictive provisions have been proposed for WBF with respect to DBF, such as limitations to their use in high seismicity areas, or reduction of the behaviour factor (q). The same restrictions are often referred also to flat-slab structures, to which seismic behaviour of WBF used to be assimilated. However, the vast majority of current codes only impose geometric and mechanical limitations to wide beam-column connections as a condition for the application of standard design procedures, in order to ensure proper stress transfer and the consequent exploitation of the full capacity of elements.

Download English Version:

# https://daneshyari.com/en/article/6739500

Download Persian Version:

https://daneshyari.com/article/6739500

Daneshyari.com