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a b s t r a c t

This paper presents a methodology for the optimization of three dimensional truss structures and its
application to supports of power transmission lines. For that purpose, an efficient modified version of
the Simulated Annealing algorithm is developed. The validity of the proposed approach relies on practical
and constructional features of the structures considered in this study. A first order sensitivity analysis is
implemented to improve the performance of the algorithm and to avoid the computation of the large
number of structural analyses usually required by the Simulated Annealing algorithm. The new SA algo-
rithm is successfully applied in two classical benchmark problems and in a real full-scale design problem.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Trusses are traditionally one of the most used structures in
engineering, covering a wide range of solutions for different engi-
neering challenges. There is also a large number of different truss
configurations for each purpose. Therefore, the layout or sizing
optimization of truss structures have been widely studied by many
authors, applying several different methods, in an effort to design
the optimum structure under certain conditions. Numerous
approaches are focused on sizing optimization [1–7] whose aim
is to find the specific bars that lead to the optimum design of a cer-
tain fixed geometry; while others face the layout optimization of
trusses in a search for the best geometry of the structure even
through topology optimization [8–10]. In this paper we define a
methodology for combined layout and sizing optimization of truss
structures [11–15] and its application to the field of power trans-
mission towers.

The range of optimization methodologies used in this field is
really extensive but, in the recent past, metaheuristic algorithms
have gained interest and have attracted attention among the opti-
mization community. This family of algorithms offers a great
adaptability to a large range of diverse problems, though it is well
known they involve tremendous computing requirements, spe-
cially when dealing with practical and real engineering problems
that involve a large number of variables and constraints.

The common goal in structural optimization is to obtain the
structure that, under certain loads and subject to particular condi-
tions, uses the minimum amount of material or, in other words,
has the minimum weight. In this study, constrained weight opti-

mization of truss structures is approached including all the partic-
ularities of transmission towers. The approach uses continuous
variables for the layout optimization and discrete sections for the
sizing by selecting elements from an available profile catalog. Mul-
tiple constraints (displacement, stress, buckling, slenderness) and
load cases are also considered. In this context and given the engi-
neering problem we are facing, we propose a methodology based
on the Simulated Annealing algorithm exposed by Kirkpatrick
[16] and further studied in [17–29]. A modified and improved ver-
sion of the Simulated Annealing algorithm is defined and proved
effective for the layout and sizing optimization of truss structures.
Additionally, a first order sensitivity analysis is implemented to
reduce the cost of all the computations the algorithm needs to per-
form, increasing the efficiency of the method. The method is suc-
cessfully applied to real power transmission structures.

2. Problem statement

2.1. Objective function

The general structural optimization problem can be written as,

minimize W ¼ FðxÞ ð1Þ
subject to

gjðxÞ 6 0; j ¼ 1; . . . ;m ð2Þ

ðxiÞmin 6 xi 6 ðxiÞmax; i ¼ 1; . . . ;n ð3Þ
In Eqs. (1)–(3), x represents the vector of n design variables. Eq.

(1) corresponds to the objective function to minimize and repre-
sents the weight of the structure, gj in Eq. (2) correspond to the
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m structural constraints considered and inequalities of Eq. (3) indi-
cate the side constraints of the n design variables.

The objective function of the problem we are facing can be
expressed in terms of a sum of the weights of each bar or element
forming the structure.

W ¼ q
Xnb
i¼1

li Ai ð4Þ

where q is the density of the material, nb is the number of bars of
the structure and li and Ai are the length and cross-sectional area
of the i-th element, respectively.

2.2. Design variables

A truss structure is defined by the coordinates of the nodes and
the connectivity of the bars. Therefore, there are several different
approaches to face their optimization: discrete or continuous siz-
ing optimization, topology optimization, layout optimization of
the positions of the nodes of the structure or mixed approaches
among others. Many truss structures, and particularly power trans-
mission towers, can be separated in pieces that include a group of
certain bars, usually called blocks. The geometry of the tower is
then formed joining some of these blocks. The layout optimization
can be considered by modifying the dimensions of these pieces,
leaving the connectivity fixed. These dimensions will represent
the continuous variables of our model.

On the other hand, we can also divide each block in the bars
they are formed by. The search for the optimum cross-sectional
area for each bar represents the sizing optimization part of the
problem. From the practical point of view, it is more appropriate
to treat these variables with discrete values since the market usu-
ally offers a discrete inventory of cross-sectional areas.

This approach leads to a mixed optimization problem where
variables of different natures need to be optimized, which
increases the complexity of the problem but also allows to achieve
better designs. This aspect is crucial to decide and choose an opti-
mization algorithm since it has to deal not only with discrete vari-
ables but with continuous as well, and be able to modify them
simultaneously.

2.3. Constraints treatment

The problem stated in (1) is subject to different structural (2)
and side (3) constraints. In common engineering problems the
number of structural constraints involved is usually large.
Although most constraints are devoted to restrain the structural
behavior of the structure, they implicate different units of measure
as they represent different physical magnitudes. To avoid numeri-
cal issues derived from this nature, the structural constraints of the
problem are treated in a normalized form.

For each constraint, a ratio is defined between the actual
value of the magnitude to analyze and a reference value. Thus,
the state of a certain constraint can be easily observed by this
ratio; values close to 0 mean a clearly satisfied constraint while
values close to 1 mean an active constraint. Values higher than
1 mean violated constraint. It is worth mentioning that a small
violation of the constraints is allowed at early stages of the pro-
cess in order to avoid a fast increment of the number of active
constraints that in some cases can lead to a rapid stagnation of
the algorithm.

Thereby, the structural constraints indicated in (2) are trans-
formed into:

ajðxÞ ¼
ujðxÞ
WjðxÞ 6 1; j ¼ 1; . . . ;m ð5Þ

where aj is the normalized constraint, u is the real value of the ana-
lyzed magnitude, Wj is the reference value and m is the number of
constraints.

Once the whole optimization problem has been stated, next
step is to define the optimization algorithm.

3. Optimization algorithm

We chose the Simulated Annealing algorithm [16–30] for the
optimization of lattice towers since it naturally allows the treat-
ment of continuous and discrete variables together. In addition,
the Simulated Annealing algorithm is able to avoid possible local
minima, which is essential in this case since real application exam-
ples involve a large number of constraints and design variables. Its
main drawback is the vast number of tests it needs to perform,
which is a common handicap in stochastic algorithms and alterna-
tive approaches like genetic algorithms. Authors developed a
numerical model based on first order Taylor expansions to reduce
the computing requirements. Hence, the number of structural
analyses required in the optimization process can be drastically
reduced.

The algorithm generates a large number of test designs where
each one of these tests analyzes a random modification of the pre-
sent design of the structure using Taylor expansions to reduce
computing requirements. Then, each design enters a decision mod-
ule where it can be accepted or rejected according to the value of
the objective function and the fulfillment of the constraints. Every
design that violates a constraint is not feasible and it is rejected
immediately. When the design is feasible, the decision module
can adopt one of the following three possible decisions:

� Downhill move: The new design fulfills all the constraints and
reduces the objective function. The new design is directly
accepted.

� Uphill move: The new design satisfies the constraints but it
involves an increase of the objective function. In this case the
probability of acceptance of this design is defined by a Boltz-
mann–Gibbs probability distribution (P) according to the
Metropolis theory [30].

PðE; TÞ ¼ e�DE=kT ð6Þ

where E is the energy function (by analogy, the objective func-
tion), DE is the difference of energy between the test and the
present design, k is the Boltzmann thermal constant and T is a
temperature parameter that controls the evolution of the algo-
rithm.
The decision module of the algorithm generates a random num-
ber 2 ½0;1� with uniform probability distribution function. This
number is then compared with (6) as this expression is consid-
ered an approximation to the probability of transition between
states in the annealing analogy [30]. If the probability PðE; TÞ is
larger than the generated random number then the trial design
is accepted even though it increases the objective function.

� Rejected Uphill Move: The new design increases the objective
function but does not fit the Boltzmann–Gibbs probability.

Consequently, the natural tendency of the algorithm is to per-
form downhill movements decreasing the objective function in a
search for the optimum design. However, the algorithm also per-
forms certain uphill movements increasing the value of the objec-
tive function, apparently moving away from the optimum. This
aspect is crucial since it allows the designs to escape from local
minima and eventually proceed to the global optimum with new
downhill moves.
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