Engineering Structures 117 (2016) 603-616

Contents lists available at ScienceDirect

Engineering Structures

journal homepage: www.elsevier.com/locate/engstruct

Composite model for predicting the punching resistance of R-UHPFRC-RC composite slabs

Malena Bastien-Masse*, Eugen Brühwiler

École Polytechnique Fédérale de Lausanne (EPFL), Station 18, 1015 Lausanne, Switzerland

ARTICLE INFO

Article history: Received 27 August 2015 Revised 29 February 2016 Accepted 7 March 2016 Available online 30 March 2016

Keywords: Composite slab Flat slabs Punching shear resistance Ultra-High Performance Fiber Reinforced cement-based Composite (UHPFRC) Strengthening Sector model Composite model Near interface cracking

ABSTRACT

Adding a thin layer of Ultra-High Performance Fiber Reinforced cement-based Composite (UHPFRC), with or without steel rebars, over a Reinforced Concrete (RC) slab is an efficient reinforcement method for existing structures. The thin layer of UHPFRC serves as a tensile reinforcement for the RC slab, creating a composite element. A recent experimental campaign showed that the layer of UHPFRC significantly increases the rigidity and the punching shear resistance of a RC slab submitted to a point force. An analytical composite model is developed herein to predict the global bending behavior of the composite slab and the punching shear resistance. A multilinear moment-curvature relation for composite sections is proposed to calculate the global force-rotation behavior of a slab which can then be used in combination with a composite failure criterion to predict the punching shear resistance. The contribution of the concrete section to the punching shear resistance is obtained with existing models from the literature. The UHPFRC layer resists to punching shear by out-of-plane bending over a limited length equal to its height. This mechanism induces tensile stresses perpendicularly to the interface with the concrete. The contribution of the UHPFRC layer to the punching shear resistance thus depends on the tensile strength of concrete. The results of this analytical composite model are in good agreement with the experimental result. A method is also proposed to consider pre-existing deformation of the RC section for a post-installed UHPFRC layer.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The use of a thin layer of Ultra-High Performance Fiber Reinforced cement-based Composite (UHPFRC) as an external tensile reinforcement for Reinforced Concrete (RC) slabs is a spreading technique for strengthening existing structures [1]. UHPFRC layers reinforced (or non-reinforced) with small diameter steel rebars (R-UHPFRC) have a typical thickness of between 25 and 50 mm and are cast in place over RC slabs, creating a composite RU-RC section (Fig. 1a).

This reinforcement method was proven effective to strengthen one-way elements in bending and in shear [3,4].With its high tensile properties, the UHPFRC layer contributes to the resistance of the element by its in-plane tensile resistance and deformability as well as its out-of-plane bending resistance and rotation capacity [5,6].

In a previous paper by the authors [2], an experimental campaign on the punching shear resistance of composite RU-RC slabs submitted to a point force was presented. The tests showed that the layer of UHPFRC can increase the punching shear resistance of a RC slab by at least 69% without modifying its rotation capacity as it would be expected for a slab with added flexural reinforcement. As for one-way shear, the layer of UHPFRC resists to punching shear by out-of-plane bending (Fig. 1b), meaning that it activates a bending mechanism perpendicular to the plane of the deflected shape of the composite slab.

Over the last century, punching shear resistance of RC slabs has been the object of extensive research [7]. Various analytical models were developed to predict the punching shear resistance of RC slabs using elasticity and plasticity theories. A full review of the existing models can be found in [8].

A sector model was developed in 1960 by Kinnunen and Nylander [9]. Their model allowed simulating the behavior of an axisymmetric slab by assuming that slab sectors rotate around the edge of the column. With the assumed kinematic, the force-rotation curve of the slab is obtained and combined to a failure criterion to predict the punching shear resistance (Fig. 2). The proposed failure criterion is expressed as the ultimate tangential strain in the concrete near the column. The punching shear resistance is thus related to the state of deformation in the slab due to bending.

CrossMark

^{*} Corresponding author. Tel.: +41 21 693 2885.

E-mail addresses: malena.bastien.masse@gmail.com (M. Bastien-Masse), eugen. bruehwiler@epfl.ch (E. Brühwiler).

Nomenclature

Juscings d Institution definition definition definition RV resistance of the tensile reinforcement RV reinforced (concrete definition U UHPPRC definition u UHPRC astell u UHPRC astell u UHPRC astell stell finition testist reinforcement is the SUHPRC layer v testist flexer finition u testist flexer finition u testist flexer finition u testist flexer finition u testist flexer testistististististististestestestististististestestisti	List of symbols		C	side length of column
R the relationrelationthe control of the resile	SUDSCTIP	ls	a	the better compression face of the slab to the controld
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	K DI I	reinforced LIHDEPC		of the tongile reinforcement
Rcrelinitive onlate a_{g} Intradiunt durined on aggregateUUUHPRC a_{g} Intradiunt durined on aggregateUUUHPRC torsite strength f Cconcrete f_{g} cconcrete onopressive strengthfconcrete f_{g} cconcrete f_{g} ctensile strength of UHPRCrradial f_{g} ssteel inforcement layer in RC section h hheight h_h huHPRC strain hardening h_h steel reinforcement in the R-UHPRC layer h_{g} side length of slab specimen h_h tradius of inclined crack at the level of the slabrradius of inclined crack at the level of the slabrradius of inclined crack at the level of the slab located at h_h height of the compression 200erradius of circular slabrradius of circular slabr <td< td=""><td>RU DC</td><td>reinforced concrete</td><td>d</td><td>of the tensile refinition center of aggregate</td></td<>	RU DC	reinforced concrete	d	of the tensile refinition center of aggregate
DUPTRAUPTRAUPTRAUPTRAUPTRAUPTRAConcreteInCConcreteInCConcreteInCConcreteInCConcreteInCConcreteInCConcreteInCConcreteInCConcreteInCConcreteInCConcreteInCConcreteInCConcreteInCStell PinnConcreteCTaradialInSStell PinnStell PinnSStell PinnStell PinnSStell PinnStell PinnSStell PinnStell PinnSStell PinnResile Strength of UHPRCSStell PinnResile Strength of UHPRCSStell PinnInSStell PinnInSStell PinnInSStell PinnInSStell PinnInAareaInAareaInBSide PinnInFTadius of Include Cack at the Level of the SiabFTadius of Include Cack at the Level of the SiabFIndustria PinneterFTadius of Include Cack at the Level of the SiabFIndustria PinneterFTadius of Include Cack at the Level of the SiabFInclude SiabFInclude Siab<	KC 11		u _g	reference aggregate size set at 16 mm
$ \begin{array}{ccccc} concrete compressive strength \\ cc concrete concrete \\ r concrete concrete \\ cc concrete control \\ cc concrete control \\ cc concrete concrete \\ cc concrete control \\ cc concrete control \\ cc concrete control \\ cc concrete concrete \\ cc concrete control \\ cc concrete$	U	UHPFRC UHPFRC tongile strongth	u_{g0}	reference aggregate size set at 16 mm
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0111	OHPFRC tensile strength	J	strength of a material
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C	concrete in compression	Jc f	concrete compressive strength
U_{i} Classing in outline μ_{i}	CC cr	concrete in compression	Jct f	viold strongth of stool roinforcoment
endEasily state j_{cr} OHTPRC Compression strength of UHPPRCrr and all j_{cr} maximum tensile elastic strength of UHPPRCrr and radening j_{cr} softening tensile strength of UHPRCsctop steel reinforcement layer in RC section h heightstUHPPRC strain handening l_{rr} UHPPRC characteristic length for the softening behaviorsusteel reinforcement in the R-UHPPRC layer l_{rr} UHPPRC characteristic length for the softening behaviorsurelated to the calculation of the height of the compression zone m bending moment per unit widthrr clatted to the calculation of the height of the compression zone r_{rr} radius of circular cack at the level of the top reinforcement, located at d_{rs} from the column sideLatin upper case r_{rr} radius of circular slab r_{rr} Aarea r_{rr} radius of circular slab r_{rr} Eelasticity r_{rr} radius of circular slab r_{rr} Eelasticit flexural rigidity fare toncrete cracking W_{rr} crack opening in UHPPRCE1flexural rigidity fare tonsile strength of UHPFRC is r_{rr} height of the column sideE1flexural rigidity fare tonsile strength of UHPFRC is r_{rr} radius of circular slabE2flexural rigidity fare tonsile strength of UHPFRC is r_{rr} height of the column sideFrfroe in the composite R-UHPFRC-RC tension chord r_{rr} readius of circular slabMorresist	ci ol	clacking of concrete	Jsy f	ULIDERC compressive strength
r radial j_{the} individual efficiency s steel j_{the} individual efficiency j_{the} s teststrength of UHPRC s top steel reinforcement layer in RC section h height sh UHPFRC strain hardening l_{ch} $height$ sh uteral strain the column side l_{ch} $near interface cracking length at the UHPFRC - concreteshrelated to the calculation of the height of the compress-sion zoner_cradius of inclined crack at the level of the top reinforce-ment, located at d_{sr} from the column sideLatin upper caser_cradius of circular columnr_aarear_aracar_aradius of circular column sideR_0elastic flexural rigidity after center crackingW_{tr}W_{tr}radius of circular column sideR_1flexural rigidity after tensile strength of UHPFRC isradius of circular column sider_cR_1flexural rigidity after tensine concordr_cradius column sideR_1flexural rigidity after cencer crackingW_{tr}W_{tr}R_1flexural rigidity after cencer crackingW_{tr}r_{th}h_{th}h_{th} from the column sideR_1flexural rigidity after tensine concordR_{th}h_{th}h_{th}h_{th}h_{th}h_{th}h_{th$	ei i	staal LIHDEPC or concrete	JUc f	maximum tonsile electic strength of UHDEPC
$I = tradit is strength of UHPRCI = tradits strength of UHPRC is a hardeningI = tradits strength of UHPRC is a hardeningscto p steel reinforcement in the R-UHPRC layerI = tradits strength of UHPRC characteristic length for the softening behaviorsUsteel reinforcement in the R-UHPRC layerI = tradits strength of UHPRC characteristic length for the softening behaviorsusteel reinforcement in the R-UHPRC layerI = tradits strength of UHPRC characteristic length for the softening behaviorsurelated to the calculation of the height of the compression zoneI = tradits strength of UHPRC characteristic length for the softening behaviorLatin upper caserr adius of inclined crack at the level of the top reinforcementA areaarearadius of inclined crack at the level of the slabE side length of slab specimenr_a tradius of inclined crack at the top of the slab located atR inde length of slab specimenr_a tradius of inclined crack at the top of the slab located atR inde length of slab specimenr_a tradius of inclined crack at the top of the slab located atR inde length of slab specimenr_a tradius of inclined crack at the top of the slab located atR inde length of slab specimenr_a tradius of inclined shear crack isR inde length of slab specimenr_a tradius of inclined shear crack isR inde length of slab specimenr_a tradius of inclined shear crack isR force in the R-UHPRC transith chordr_a tradius of inclined crack at the top of the slab located ath_minor in the UHPRC transith chordr_a tradius of the inclined shear crackR force in$	l r	sidel, UNPTRE OF CONCIECE	JUte f	topsile strength of LUDERC
SectorJust 1Southing tension studing of the southing tension studing moment per unit widthstatistic per casembending moment per unit widtha arearelated to the calculation of the height of the compression zoneradius of circular columna arearelated to the calculation of the height of the compression zoneradius of circular columnB side length of slab specimenradius of circular slabradius of circular slabEl, flexural rigidity after concrete crackingwinradius of force introduction at perimeterF, force in tross sectionGreek lower casemF_u force in the composite R-UHPRC CR tension chordGreek lower caseaccMust resisting moment of composite beam calculated with the layered analytical modelstraincurvature when cracking heast stabilized in a RC cross-sectionMust resisting moment of composite beam obtained from a bending teststrain in UHPRRC at maximum compressive strength θ_{ij} within the HPRR cara maximum compressive strength θ_{ij} within the further caracking has stabilized in a RC cross-sectionV punching bear forcewithin the curvature due to tension stiffening λ_{ij} V punching bear force ρ_{ij} retriforcement ratioV pu	I C	Iduidi	JUtu f	coftoning tongile strongth of LIHDEPC
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	top steel reinforcement layer in PC section	JUt,S1 h	boight
	sc	UHDEBC strain bardoning	1	INTERC characteristic length for the softening behavior
So steer remote the intervent recently the reduction of the height of the compression zone in the calculation of the height of the compression zone is a first field in the calculation of the height of the compression zone is a first field in the calculation of the height of the compression zone is a first field in the calculation of the height of the compression zone is a first field in the calculated in the calculated is a first field in the calculated in the calculated is a first field in the calculated in the calculated is a first field in the calculated in the calculated is a first field in the calculated is a first first field in the calculated is a first fir	SIL	cteel reinforcement in the P UHPEPC layer	l _{ch}	poar interface cracking length at the LIUPEPC concrete
Syy jetting of sterttargentialxrelated to the calculation of the height of the compression zoneLatin upper caserAareaBside length of slab specimenEmodulus of elasticityEmodulus of elasticityE1flexural rigidity after concrete crackingE2flexural rigidity after concrete crackingE1flexural rigidity after tensile strength of UHPFRC isFforce in the R-UHPFRC tension chordFforce in the R-UHPFRC-RC-RC tension chordFforce in the R-UHPFRC-RC-RC tension chordMoyrresisting moment of composite beam calculated with the hayered analytical modelMoyrresisting moment of composite beam calculated with the hayered analytical modelMoyrresisting moment of composite beam calculated with the hayered analytical modelMoyrresisting moment of composite beam calculated with the hayered analytical modelMoyrresisting moment of composite beam calculated with the hayered analytical modelMoyrresisting moment of composite beam calculated with the hayered analytical modelMoyrresisting moment of composite beam calculated with the layered analytical modelMoyrresisting moment of composite beam calculated with the layered analytical modelMoyrresisting moment of composite beam calculated with the layered analytical modelMoyrresisting moment of composite beam calculated with the layered and forceMoyrresisting moment of composite beam calculated with <td>50</td> <td>violding of stool</td> <td>INIC</td> <td>interface</td>	50	violding of stool	INIC	interface
trelation to the relation of the height of the compression zone t	sy t	tangential		handing moment nor unit width
XTelater to the calculation of the height of the compressionxrelater to the calculation of the height of the compressionxrelation of composite carackAareaBside length of slab specimenEmodulus of elasticityE1_0elasticity after tensile strength of UHPFRC isE1_0elasticity after tensile strength of UHPFRC isE1_1flexural rigidity after tensile strength of UHPFRC isE1_2flexural rigidity after tensile strength of UHPFRC isF1_0reachedF2_0force in the composite tensile strength of UHPFRC isF3_0resisting moment of composite beam calculated with the hayered analytical modelMmitresisting moment of composite beam calculated with the multilinear moment curvatureMmitresisting moment of composite beam calculated with the multilinear moment of composite beam obtained from a bending teststrain in UHPFRC at tensile lestic limit strength \mathcal{G}_{Uc} Sparameter related to the calculation of the height of the compression zonestrain in UHPFRC at tensile lestic limit strength \mathcal{G}_{Uc} Vpunching shear force \mathcal{V}_{voit} \mathcal{K}_{voit} curvature when cracking has stabilized in a RC cross- sectionVpunching shear force \mathcal{V}_{voit} \mathcal{F}_{voit} real curvature when tracing	l N	idligelillidi	111 	radius massured from the center of the slab
Latin upper case Latin upper case A area F c radius of circular column side F c radius of circular column in F c radius of circular slab F	X	sion zono	l r	radius of inclined grack at the level of the ten reinforce
Latin upper caserc radius of circular column radius of circular slabA B E modulus of elasticityrg radius of circular slabE Henni, tocated at d_x , function reachedrg radius of circular slabEl1 F F F reachedflexural rigidity after concrete cracking reachedwu wu crack opening in UHPFRC reachedF F F F rorce in the R-UHPFRC tension chordGreek lower case α_c eminimum angle of the inclined shear crack β efficiency factor to take into account the reduced tor- sional rigidity of orthogonal reinforcement α_c esting moment of composite beam calculated with the multilinear moment curvature bending testGreek lower case α_c eminimum angle of the inclined shear crack β efficiency factor to take into account the reduced tor- sional rigidity of orthogonal reinforcement α_c estrain in UHPFRC at tensile elastic limit strength α_{cdc} strain in UHPFRC at maximum compressive strength α_{cdc} estrain in UHPFRC at maximum compressive strength α_{cdc} curvature in a cross-section K_{cdc} V veak V vunching shear force V wu UHPFRC layer contribution to punching resistanceK κ_{cdd} curvature when the layer of UHPFRC is added to a RC sectionLatin lower case V veak be an width b b b b b b b b b b b b b b b curte ts slab b b b b b curte ts slab b curve test slab b b curve test slab b curve test slab b curve test slab b curve test slab b curve test sl		SIOII ZOIIE	1 ₀	mont located at d from the column side
Latin upper caseicIndustryLatin upper caseicIndustryIndustryBside length of slab specimen r_q radius of circular slabEmodulus of elasticity r_u radius of circular slabEmodulus of elastic flexural rigidity r_u radius of circular slabEl_0elastic flexural rigidity after concrete cracking w_u crack opening in UHPFRCEl_1flexural rigidity after tensile strength of UHPFR is w_u crack opening in UHPFRCFforce in the CullPFR Cension chord π_c minimum angle of the inclined shear crackFforce in the composite R-UHPFRC-RC tension chord π_c minimum angle of the inclined shear crackMuprresisting moment of composite beam calculated with the layered analytical model π_c minimum angle of the slab located at maximum compressive strength π_u Muntresisting moment of composite beam calculated with the layered analytical model π_c strain in UHPFRC at maximum compressive strength π_u Sparameter related to the calculation of the height of the compression zone π_c strain in UHPFRC at maximum compressive strength π_u Sparameter related to the calculation of the height of the compression zone π_c curvature when the layer of UHPFRC is added to a RC sectionVpunching shear force κ_1 curvature when the layer of UHPFRC is added to a RC sectionVpunching shear force κ_1 curvature when the layer of UHPFRC is added to a RC sectionV			*	radius of singular column
Aarea I_q radius of circular slabBside length of slab specimen r_s radius of circular slabEmodulus of elasticity r_u radius of circular slabE1elastic flexural rigidity r_u radius of circular slabE1flexural rigidity after concrete cracking w_{tr} h_c+h_u from the column sideE1flexural rigidity after tensile strength of UHPFRC is w_{tr} rack opening in UHPFRCE1flexural rigidity after tensile strength of UHPFRC is w_{tr} height of the compression zoneFforce in the R-UHPFRC tension chord σ_c minimum angle of the inclined shear crack F_T force in the R-UHPFRC tension chord β_c efficiency factor to take into account the reduced torsional rigidity of orthogonal reinforcement M_{or} resisting moment of composite beam calculated with the hultilinear moment curvature ε_c strain in concrete at maximum compressive strength ε_{vc} M_{rest} resisting moment of composite beam obtained from a bending test ε_{vc} strain in UHPFRC at maximum compressive strength ε_{vc} V_{rest} concrete contribution to punching resistance κ_1 curvature when cracking has stabilized in a RC cross- section V_{vap} Measured shear force κ_{rd} curvature when the layer of UHPFRC is added to a RC section V_{vap} Measured shear force κ_{rd} curvature when the layer of UHPFRC is added to a RC slab ψ V_{vap} Measured shear force κ_{rd} curvature when the laye	Latin up	per case	I _C	radius of force introduction at perimeter
Bside length of slab specimen r_s radius of inclued rack at the top of the slab located at h_c+h_c from the column sideEmodulus of elasticityradius of inclined crack at the top of the slab located at h_c+h_c from the column sideEl_0flexural rigidity after concrete cracking w_{Ur} radius of inclined crack at the top of the slab located at h_c+h_c from the column sideEl_0flexural rigidity after concrete cracking w_{Ur} radius of inclined crack at the top of the slab located at h_c+h_c from the column sideFforce in the R-UHPFR tension chord x height of the compression zone F_{RU} force in the R-UHPFR tension chord z_{ce} minimum angle of the inclined shear crack M_{pr} resisting moment of composite beam calculated with the layered analytical model z_{sy} yielding strain in steel reinforcement M_{mil} resisting moment of composite beam calculated with the multilinear moment curvature z_{sy} yielding strain in toel PFRC at maximum compressive strength ε_{tc} S parameter related to the calculation of the height of the compression zone ω_{train} strain in curvature when cracking has stabilized in a RC cross- section V_{exp} Measured shear force κ_1 curvature when cracking has stabilized in a RC cross- section V_{exp} Measured shear force κ_{rdd} curvature when the layer of UHPFRC is added to a RC section V_{exp} Measured shear force ρ reinforcement ratio V_{exp} Measured shear force ρ reinforcement ra	Α	area	I q	radius of singular slab
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	В	side length of slab specimen	I _S	radius of inclined grack at the ten of the slab located at
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	E	modulus of elasticity	ι _U	h the from the column side
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	El ₀	elastic flexural rigidity	147	$n_c + n_U$ from the could find side
$\begin{array}{llllllllllllllllllllllllllllllllllll$	EI_1	flexural rigidity after concrete cracking	w _{Ut}	height of the compression zone
FFacthedGreek lower case F_{RU} force in tross section σ_c minimum angle of the inclined shear crack F_T force in the composite R-UHPFRC ension chord β efficiency factor to take into account the reduced torsional rigidity of orthogonal reinforcement M_{morent} resisting moment of composite beam calculated with the layered analytical model ε strain M_{ml} resisting moment of composite beam calculated with the multilinear moment curvature ε strain M_{rest} resisting moment of composite beam obtained from a bending test ε_{c1} strain in UHPFRC at maximum compressive strength ε_{c1} S parameter related to the calculation of the height of the compression zone ψ_{lu} angle of rotation in the UHPFRC tinge κ V punching shear force κ_1 curvature when tracking has stabilized in a RC cross- section V_{calc} Calculated shear force κ_{add} curvature when the layer of UHPFRC is added to a RC section V_{calc} Calculated shear force ρ_{TC} reinforcement ratio ρ_{TC} V_{u} UHPFRC layer contribution to punching resistance ρ_{TC} reinforcement ratio ρ_{TC} b_0 critical perimeter for punching shear set at $d_{sc}/2$ from the column face ρ_{TC} reinforcement ratio ρ_{TC} b_1 distance between force introduction points in the square test slab σ stress ψ b_2 distance between force introduction point and nearest slab sidestress ψ <td>EI_2</td> <td>flexural rigidity after tensile strength of UHPFRC is</td> <td>X</td> <td>lieight of the compression zone</td>	EI_2	flexural rigidity after tensile strength of UHPFRC is	X	lieight of the compression zone
$ \begin{array}{c} F_{RU} & \text{force in the costs section} \\ F_{RU} & \text{force in the composite R-UHPFRC tension chord} \\ F_{T} & \text{force in the composite R-UHPFRC-RC tension chord} \\ M & \text{moment} \\ M_{WT} & \text{resisting moment of composite beam calculated with} \\ \text{the layered analytical model} \\ M_{ml} & \text{resisting moment of composite beam calculated with} \\ \text{the multilinear moment curvature} \\ M_{test} & \text{resisting moment of composite beam obtained from a bending test} \\ S & \text{parameter related to the calculation of the height of the compression zone} \\ V & \text{punching shear force} \\ V_{cac} & \text{concrete contribution to punching resistance} \\ V_{cack} & \text{Calculated shear force} \\ V_{cack} & \text{Calculated shear force} \\ V_{u} & \text{UHPFRC layer contribution to punching resistance} \\ V_{casp} & \text{Measured shear force} \\ V_{u} & \text{UHPFRC layer contribution to punching shear set at } d_{sc}/2 \text{ from} \\ b & \text{beam width} \\ b_{0} & \text{critical perimeter for punching shear set at } d_{sc}/2 \text{ from} \\ b_{1} & \text{distance between two force introduction point and nearest} \\ slab side \\ \end{array} $	F	reached	Currel 1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Г Г	force in cross section	Greek IO	wer cuse
T_T Index on posite K-OHPERC-RC tension choid β endentity factor to take into account the reduced tor- sional rigidity of orthogonal reinforcement $M_{\rm pyr}$ resisting moment of composite beam calculated with the alyered analytical model ε strain $M_{\rm null}$ resisting moment of composite beam calculated with the multilinear moment curvature $\varepsilon_{\rm sy}$ yielding strain in steel reinforcement $M_{\rm null}$ resisting moment of composite beam obtained from a 	Γ _{RU}	force in the composite P LUDEPC, PC tension should	α_c	infinition angle of the inclined shear crack
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Г _Т		р	eniciency factor to take into account the feduced tor-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	IVI M	moment		storial rightly of orthogonal remorcement
$\begin{array}{cccc} & & & & & & & & & & & & & & & & & $	Wilyr	the layered analytical model	3	Suiding strain in steel reinforcement
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	M	registing moment of composite beam calculated with	e _{sy}	strain in concrete at maximum compressive strength
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	l vi ml	the multilinear moment curvature	С _{С1}	strain in LIHPEPC at maximum compressive strength
MitestTesting informer of composite beam obtained from a bending test z_{the} strain in UHPFRC at tensite ensure finite trength z_{thu} Sparameter related to the calculation of the height of the compression zone z_{the} strain in UHPFRC at maximum tensile strength 	NЛ	resisting moment of composite beam obtained from a	ε _{Uc}	strain in UHPERC at tensile electic limit strength
$\begin{array}{cccc} & & & & & & & & & & & & & & & & & $	WI test	bonding tost	©Ute	strain in UHPEPC at maximum tangila strongth
$\begin{array}{cccc} & & & & & & & & & & & & & & & & & $	ç	parameter related to the calculation of the height of the	οUtu Δ	angle of rotation in the UHDEPC binge
Vpunching shear forcekcurvature in a closs-section V_c concrete contribution to punching resistance κ_1 curvature when cracking has stabilized in a RC cross- section V_{calc} Calculated shear force κ_{add} curvature when the layer of UHPFRC is added to a RC section V_{exp} Measured shear force κ_{add} curvature when the layer of UHPFRC is added to a RC section V_{exp} Measured shear force κ_{TS} reduction in the curvature due to tension stiffening 	5	compression zone	00	survature in a cross section
V_c pincturing shear force κ_1 curvature when it clacking has stabilized in a ke closs section V_c concrete contribution to punching resistance κ_{add} curvature when the layer of UHPFRC is added to a RC section V_{exp} Measured shear force κ_{add} curvature when the layer of UHPFRC is added to a RC section V_{exp} Measured shear force κ_{TS} reduction in the curvature due to tension stiffening λ remaining ratio of f_{Utu} Latin lower case ρ reinforcement ratiobbeam width ρ_{TC} reinforcement ratio in the tension chordbcritical perimeter for punching shear set at $d_{sc}/2$ from the column face φ stressb_1distance between two force introduction points in the square test slab ψ_{add} rotation when the layer of UHPFRC is added to a RC slab site sideb_2distance between force introduction point and nearest slab sidesidestress	V	punching shear force	к К	curvature when cracking has stabilized in a RC cross-
$\begin{array}{c} v_{c} \\ v_{c} \\$	V	concrete contribution to punching resistance	π1	section
$ \begin{array}{c} V_{calc} \\ V_{exp} \\ U \\ W_{exp} \\ W_{u} \\ W \\ $	V _C V.	Calculated shear force	κ	curvature when the layer of LIHPERC is added to a RC
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V calc	Measured shear force	Nadd	section
Latin lower case b beam width b_0 critical perimeter for punching shear set at $d_{sc}/2$ from the column face b_1 distance between two force introduction points in the square test slab b_2 distance between force introduction point and nearest slab side λ remaining ratio of f_{Utu} ρ reinforcement ratio ρ_{TC} reinforcement ratio in the tension chord σ stress ψ rotation ψ_{add} rotation when the layer of UHPFRC is added to a RC slab	V exp V.	LIHPERC layer contribution to punching resistance	Kre	reduction in the curvature due to tension stiffening
Latin lower case ρ reinforcement ratiobbeam width ρ_{TC} reinforcement ratiobcritical perimeter for punching shear set at $d_{sc}/2$ from the column face ρ_{TC} reinforcement ratio in the tension chordbdistance between two force introduction points in the square test slab ψ_{add} rotationbdistance between force introduction point and nearest slab sidesiderotation	•0	of the layer contribution to puncting resistance	λ	remaining ratio of fu
$\begin{array}{cccc} p & \text{reinforcement ratio} \\ b & \text{beam width} & \rho_{TC} & \text{reinforcement ratio} \\ b_0 & \text{critical perimeter for punching shear set at } d_{sc}/2 \text{ from} & \sigma & \text{stress} \\ & \text{the column face} & \psi & \text{rotation} \\ b_1 & \text{distance between two force introduction points in the} & square test slab \\ b_2 & \text{distance between force introduction point and nearest} \\ & \text{slab side} \end{array}$	Latin Journ case		0	reinforcement ratio
$ \begin{array}{c} b \\ b_{0} \\ critical perimeter for punching shear set at d_{sc}/2 \text{ from} \\ distance between two force introduction points in the square test slab \\ b_{2} \\ distance between force introduction point and nearest \\ slab side \\ \end{array} $	LULIII IOV	been width	Р Отс	reinforcement ratio in the tension chord
$ \begin{array}{c} b_{0} \\ b_{1} \\ b_{2} \\ b_{2} \\ b_{3} \\ b_{4} \\ b_{2} \\ b_{3} \\ b_{4} \\ b_{2} \\ b_{3} \\ b_{4} \\ b_{5} $	D h	Detail willing char set at $d/2$ from	σ	stress
b_1 distance between two force introduction points in the ψ_{add} rotation when the layer of UHPFRC is added to a RC slab b_2 distance between force introduction point and nearest slab side	<i>D</i> ₀	the column face	Ŵ	rotation
 b₁ additional and a square test slab b₂ distance between force introduction point and nearest slab side 	h.	distance between two force introduction points in the	T Vada	rotation when the laver of UHPFRC is added to a RC slab
<i>b</i> ₂ distance between force introduction point and nearest slab side	<i>v</i> ₁	source between two force infroduction points in the	7 uuu	
slab side	h ₂	distance between force introduction point and pearest		
	52	slab side		

The sector model served as a basis for further model developments [10-12]. Hallgren [10] modified the failure criterion using fracture mechanics. Muttoni [12] used the sector model to develop the critical shear crack theory (CSCT) in which the failure criterion is a function of the slab rotation. The CSCT is now the basis for the punching shear resistance calculation in the *fib* Model Code 2010 [13] as well as the Swiss standards for the design of concrete structures [14].

The objective of the presented work is to develop analytical models to include the contribution of the UHPFRC layer to the punching shear resistance calculation of a composite slab. First, a multilinear moment–curvature relation is proposed to predict the Download English Version:

https://daneshyari.com/en/article/6740091

Download Persian Version:

https://daneshyari.com/article/6740091

Daneshyari.com