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a b s t r a c t

A complete beam–column classification and the corresponding characteristic equations for the stability
and undamped natural frequencies of 3D orthotropic Timoshenko beam–columns with singly symmetric
closed section and with elastic end connections subjected to an eccentric end axial load are presented and
derived using three different approaches. The first two approaches are those by Engesser and Haringx
that include the shear component of the applied axial force proportional to the slope (du/dx and dv/dx
in planes xz and yz, respectively) and to the angle of rotation of the cross-section (hx and hy in planes
yz and xz, respectively) along the span of the member, respectively. The third approach is a simplified for-
mulation based on the classical Euler theory that includes the effects of shear deformations but neglects
the induced shear component of the applied axial force along the member. The proposed methods and
characteristic equations are capable of determining the critical axial loads and undamped natural fre-
quencies of beam–columns with elastic end connections. Four comprehensive examples are included that
show the effectiveness and simplicity of the proposed method and the results obtained are compared
with experimental results available in the technical literature. It is shown that: (1) the natural frequen-
cies and critical axial loads of beam–columns increase as the shear stiffness GAs, the degrees of fixity and
lateral bracings at the ends of the member increase; (2) the natural frequencies calculated using the three
approaches are identical to each other when the applied axial load is zero; (3) the critical axial load in
compression using the Engesser approach is lower than the one obtained using the Haringx approach;
(4) the critical axial loads in compression are highly affected by the degree of flexural fixity at the sup-
ports, but those in tension are not affected much; and (5) the Haringx approach is the only one among the
three approaches capable of capturing the phenomena of tension buckling observed in seismic isolators.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The static and vibration analyses of beams and beam–columns
are of great importance in structural dynamics, aerospace and
earthquake engineering. The stability and dynamic behavior of
beam–columns have been studied by numerous researchers and
treated in the literature ([1–6], among others) using different
methods. The combined effects of shear forces and bending defor-
mations along the member on its critical axial load of prismatic
beam–columns were first studied by Engesser in 1891 and later
by Nussbaum in 1907. Timoshenko and Gere [7] presented these
effects on the static lateral buckling of prismatic and built-up col-
umns (laced, with batten plates, and with perforated cover plates)
along with the historical contributions of Engesser, Nussbaum,
Prandalt, Olsson, Haringx, and others. Additional details are given
by Bazant and Celodin [8].

The vibration analysis of framed structures modeled with 2D
beams and columns have been presented by Farghaly and Shebl
[9] and Aristizabal-Ochoa [10–13] among many other researchers.
On the other hand, the dynamic response of 3D beams and beam
columns have been studied by Banerjee [14], Rafezy and Howson
[15], and Viola et al. [16]. The free vibration of a 3D-orthotropic
and uniform shear beam–column with generalized boundary con-
ditions subjected to an eccentric end axial load in addition to a lin-
early distributed eccentric axial load along its span has been
developed by Aristizabal-Ochoa [17]. Monsalve-Cano and
Aristizabal-Ochoa [18] presented the characteristic equations for
the undamped natural frequencies and buckling loads of an ortho-
tropic singly symmetrical 3D Timoshenko beam–column with gen-
eralized support conditions using the Haringx approach only.

The effects of the shear force components induced by the
applied axial force on FRP and sandwich columns and elastomeric
bearings have been investigated experimentally and analytically
by Kelly [19], Roberts [20], Aristizabal-Ochoa [21], Bai and Keller
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[22], Bazant [23], Fleck and Sridhar [24], Hoff and Mautner [25],
Attard and Huntt [26] and Buckle, Nagarajaiah and Ferrell [27].
More recently, a complete column classification and corresponding
stability equations that evaluate the elastic critical axial load of
prismatic columns with sidesway uninhibited, partially inhibited,
and totally uninhibited including the effects of bending and shear
deformations and semi-rigid connections using the three
approaches (Engesser, Haringx and Euler) have been proposed by
Aristizabal-Ochoa [28,29].

The main objective of this paper is to present a complete beam–
column classification and the corresponding characteristic equa-
tions for the undamped natural frequencies and modes of vibration
of an orthotropic singly-symmetrical 3D Timoshenko beam–col-
umn with generalized end conditions (i.e., with semi-rigid bending
restraints and lateral bracings as well as lumped masses at both
ends) subject to a constant eccentric axial load at both ends using
three different approaches. The first two approaches are those by
Engesser and Haringx (fully explained in detail by Aristizabal-
Ochoa [28], and Timoshenko and Gere [30]) that include the effects
of the shear component of applied axial force proportional to the
total slope and to the angle of rotation of the cross section along
the span of the member, respectively. The third approach is a sim-
plified formulation based on Euler theory that includes the effects
of shear deformations but neglecting the shear component of the
applied axial force along the span of the member.

2. Structural dynamic model

The proposed model is an extension of those presented previ-
ously by the authors [18,28]. Consider the Timoshenko beam–col-
umn AB of length span L with singly symmetrical cross section as
shown in of Fig. 1. It is assumed that the member AB to be: (1) pris-
matic with perfectly straight centroidal axis z; (2) subject to a end

axial load P applied along the z-axis; (3) with two rigid masses
attached at A and B of magnitudesMa andMb with rotatory inertias
Jax, Jay, Jaw and Jbx, Jby, Jbw about the x, y and z axes, respectively; (4)
elastic torsional connections with stiffnesses jaw and jbw, elastic
bending connections with stiffnesses jax, jbx and jay, jby about
the local principal x- and y-axes, and end lateral elastic connections
with stiffnesses Sax, Sbx and Say, Sby along the local principal x- and
y-axes at ends A and B, respectively. The end connections are
related to all six possible degrees of freedom (bending, torsional,
axial and transverse directions) at each extreme of the beam–col-
umn. In the technical literature, these are generally assumed as
perfectly rigid (infinity stiffness) or perfectly hinged (zero stiffness)
connections in the design of beam-to-beam, beam-to-column, and
column-foundation connections.

The properties of member includes: mass per unit length �m,
moments of inertia Ix and Iy about its cross section main centroidal
axes x and y; torsional moment of inertia J and torsional shear
modulus Gxy; cross-section area A and axial modulus Ez; effective
shear-areas Asx and Asy with the corresponding shear moduli Gx

and Gy. Also notice that letters E;H and S are used throughout this
manuscript for differentiate between Engesser, Haringx, and Sim-
plified Euler approaches, respectively.

3. Governing equations in the xz-plane

The governing differential equations of a Timoshenko beam–
column for buckling and free vibration in the xz plane utilizing
the three different approaches are as follow:

GxAsx u00 � h0y
� �

þ Pu00 � �m€u ¼ 0 ð1EÞ

EzIyh
00
y þ GxAsx u0 � hy

� �� �mL2r2y€hy ¼ 0 ð2EÞ

Nomenclature

A gross-sectional area of the beam–column
Asx and Asy effective shear areas along the x- and y-axes, respec-

tively
A1, A2, A3, A4, A5 and A6 constants required in the vibration anal-

ysis of the beam–column in the yz-plane
Ez elastic modulus of the beam–column along the z-axis
F1, F2, F3 and F4 constants required in the vibration analysis of

the beam–column in the xz-plane
Gx and Gy transverse shear moduli of the beam–column along

the x- and y-axes, respectively
Gxy shear modulus of the beam–column under torsion
Hx and Hy shear force along the member in the x- and y-

direction, respectively
Ix and Iy second moment of area of the member cross section

about the x- and y-axes, respectively
Ia torsional inertia per unit of length of the beam–column

about z-axis
J torsional moment of inertia of the cross section of the

beam–column
Jax, Jay and Jbx, Jby rotational inertias of the masses at ends A and B

about the x- and y-axes, respectively
Jaw and Jbw torsional inertias of the attached masses at ends A and

B about the z-axes, respectively
jax, jbx and jbx, jby stiffness of the elastic flexural connections at

ends A and B about the x-and y-axes, respectively
jaw and jbw stiffness of the elastic torsional connections at ends

A and B, respectively (force � distance/radian)
L span of the beam–column

Ma and Mb rigid masses attached at A and B ends of the beam–
column, respectively

MxðnÞ andMyðnÞ bending moment along the beam–column about
the x- and y-axes, respectively

�m mass per unit length of the beam–column
P end axial load applied at the centroid of the cross sec-

tion with coordinates (xa,0)( + tensile)
�mL2r2x and �mL2r2y rotatory inertias of the beam–column about the

x- and y-axes, respectively
Sax, Say and Sbx, Sby stiffness of the lateral bracings at ends A and B

along the x- and y-axes, respectively
uðz; tÞ lateral deflection of the shear center of the member

along the x-axis
vðz; tÞ lateral deflection of the shear center of the member

along the y-axis
va lateral deflection of the centroidal line of the member

along the y-axis
t time
T torsional moment
z centroidal axis of the beam–column
cx and cy shear distortion of the member cross section caused by

transverse shear in the x- and y-directions, respectively
wðz; tÞ ¼ WðzÞ sinxt torsional rotation about the shear center S

along the z-axis of the member
hx and hy bending rotations of the member cross section about

the x- and y-axes
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