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a b s t r a c t

In this study the robustness of six metaheuristic algorithms – ant colony optimization, genetic algorithm,
harmony search, particle swarm optimization, simulated annealing and tabu search – and their three
improved variants – design driven harmony search, adaptive harmony search and improved simulated
annealing – are compared, and the characteristics that affect algorithmic robustness are investigated.
Algorithmic robustness is defined as the ability of an algorithm to consistently converge to low cost
designs regardless of the variable space and irrespective of the initial starting point. To this extent, the
variable spaces present in steel frame design optimization problems are studied and two unique chal-
lenges of these spaces are identified and explained. Five benchmark steel frame designs, including
moment and braced frames, are presented to serve as examples on which the algorithms can be tested,
and the robustness of the algorithms is investigated using these representative designs. An in-depth dis-
cussion on the characteristics of metaheuristic algorithms that make them successful is presented. It is
shown that the algorithms that exhibit robustness are those that incorporate intensification and diversi-
fication in ways that can effectively navigate the large variable spaces present in steel frame design opti-
mization problems. The most robust algorithms are found to be design driven harmony search and tabu
search.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The optimization of steel frames is an important problem in
engineering design that has been studied for the past few decades,
with many different techniques and algorithms being adapted and
used [1,2]. The goal of steel frame design optimization is to mini-
mize the weight of a frame by choosing the lightest steel sections
possible while still meeting building codes strength and drift con-
straints as well as practical constraints such as constructability.
The complex and nonlinear design process causes the optimization
problem to be highly nonlinear and thus difficult to solve.
Furthermore, as the members used in a steel frame come from a
finite number of standard cross-sections in the steel tables, the
optimization problem is discrete in nature and requires meta-
heuristic (stochastic) algorithms that can operate on discrete vari-
able spaces.

Metaheuristic or stochastic algorithms that are designed to
operate on discrete variable spaces utilize randomness and mem-
ory to search large discrete variable spaces in order to find an

optimal solution. Metaheuristic algorithms are typically based on
phenomena that are observed in nature, and those used for steel
frame design optimization are no exception. Simulated annealing,
based on the behavior of cooling metals, was first used for steel
frame design optimization by Balling [3]. Genetic algorithms
attempt to emulate natural selection and were adapted for steel
frame design optimization by Rajeev and Krishnamoorthy [4].
Harmony search is based on the ability of many musicians to con-
tribute to one harmony and was first used for steel frame design
optimization by Lee and Geem [5]. Camp et al. [6] adapted ant col-
ony optimization, based on the observed ability of ant colonies to
find the optimal path to a food source, for steel frame design opti-
mization. Particle swarm optimization was originally used in steel
frame design optimization by Perez and Behdinan [7] and mimics
the ability of large swarms to travel together to a single point.
Tabu search is a method that focuses on escaping local optima by
avoiding areas that have previously been visited. It was adapted
for steel frame design optimization by Bland [8]. The above six
algorithms are the commonly used metaheuristic algorithms found
in the literature for steel frame design optimization. As these algo-
rithms are inspired from different processes, each metaheuristic
algorithm attempts to navigate a discrete variable space in a
unique manner in search of an optimum. However, the same
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overall characteristics of diversification and intensification are pre-
sent in every metaheuristic algorithm. Diversification refers to the
ability of an algorithm to search new regions of the variable space
by incorporating randomness in the search. This helps to escape
local optima by more thoroughly searching a variable space but
will cause convergence issues as algorithms fail to converge to
one solution. Intensification is the use of memory to seek out
regions of the variable space that have been shown to produce
good solutions. Intensification encourages convergence by contin-
ually drawing solutions from favorable regions of the variable
space, but will increase the likelihood of converging to local
optima. The performance of metaheuristic algorithms depends on
a balance between the conflicting characteristics of diversification
and intensification to search enough of the variable space while
still converging to good solutions (see Yang [9]).

For the problem of steel frame design optimization, these meta-
heuristic algorithms work by searching the discrete variable space
of steel sections while incorporating design code and other practi-
cal constraints through the use of penalty functions, ensuring that
the optimal design achieved is within specifications. Steel frame
design optimization problems have two unique properties that
make them difficult to work with. First, the variable space for a
realistically sized steel frame is exceedingly large, therefore search
for global optimum is typically not possible. Instead the goal is to
obtain good optimal solutions; however, this might also be difficult
due to large variable spaces which can cause algorithms to prema-
turely converge to less optimal designs. Second, these problems are
not guided by any one sense of metric due to the many properties
inherent to a steel member cross section, meaning that different
members in a frame may be governed by different properties.
This causes the discrete variable space to be poorly organized
and makes it difficult for algorithms to converge to good solutions
if they incorporate intensification in a way that assumes a well-
organized space as shown by Murren [10].

For steel frame design optimization to be useful in practice, the
metaheuristic algorithms should be able to consistently converge
to low cost designs. This is referred to as algorithmic robustness:
the ability of an algorithm to consistently converge to low cost
designs regardless of the variable space and irrespective of the ini-
tial starting point. Algorithmic robustness is an important property
of a metaheuristic algorithm for successful application to steel
frame design optimization problems. However, the aforemen-
tioned challenges inherent to these problems can severely hinder
algorithmic robustness. The large variable spaces and lack of gov-
erning metric mean that a given metaheuristic algorithm can con-
verge to two very different designs when run two separate times.
In addition to this, algorithms that may appear robust when used
on smaller variable spaces can quickly lose robustness as variable
space is increased. Therefore, studying algorithms on small prob-
lems may not be sufficient to fully explore algorithmic perfor-
mance, especially considering the large variable spaces present in
realistically sized steel frames. Therefore in order to move steel
frame design optimization in a direction that is more useful to
practicing engineers, algorithmic robustness of metaheuristic algo-
rithms must be investigated.

In this study the robustness of six metaheuristic algorithms is
compared, and the characteristics that affect their robustness are
carefully studied. Five benchmark steel frame designs are pre-
sented to serve as examples on which the algorithms can be tested.
Planar and space moment and braced frames with varying design
spaces are optimized. This is done in order to sufficiently test each
algorithm on different types of steel frames. The six algorithms
that are investigated include: simulated annealing, genetic algo-
rithms, harmony search, tabu search, ant colony optimization
and particle swarm optimization. To have an objective comparison,
the best available version of each algorithm has been adopted and

implemented within the authors’ best judgment. Therefore, three
additional variants of these algorithms found in the literature –
improved simulated annealing, adaptive harmony search and
design driven harmony search – are also investigated. To evaluate
the algorithmic robustness, each algorithm is run 500 times on
every planar frame and 200 times on every space frame, ensuring
that the algorithms are adequately investigated. Thus, the objec-
tive of this study is to give an accurate representation of the
robustness of these algorithms and the characteristics that affect
their robustness, enabling researchers to understand how they
compare in this aspect and improve upon existing algorithms or
create new algorithms. The main contributions of this paper are
as follows: (a) the robustness of these algorithms is investigated
by performing a large number of optimizations on a variety of dif-
ferent variable spaces; (b) an objective comparison of all algo-
rithms is given by using the same penalty factors and number of
structural analyses for each algorithm; (c) the characteristics that
control how each algorithm explores the variable space are dis-
cussed so as to be a reference on these algorithms for steel frame
design optimization and for other engineering applications utiliz-
ing metaheuristic algorithms. The paper is organized as follows:
Section 2 presents the formulation of the steel frame design opti-
mization problem while Section 3 describes the metaheuristic
algorithms. Section 4 details the five benchmark steel frames used
for optimization and Section 5 discusses the optimization results.
An in-depth discussion on the characteristics of metaheuristic
algorithms that make them successful is presented in Section 6,
and finally, Section 7 presents important conclusions.

2. Steel frame design optimization

2.1. Optimization problem

The discrete design optimization problem for steel frames can
be expressed as follows:

min f ðxÞ
Subject to : ð1Þ
giðxÞ 6 0 i ¼ 1; . . . ;m

where f ðxÞ is the objective function. The members in a steel frame
are typically divided into groups with the same W-shape section
assigned to all the members in a group. Therefore, the design vector
x is of size ng , where ng is the total number of groups in a problem,
and this vector represents a set of all values assigned, the values
being the W-shape sections. If nk (k ¼ 1;2 . . . ;ng) are the possible
choices of W-shapes for the member group k, then from a combina-
torics standpoint there are NT ¼ n1 � n2 . . .� nng distinct choices for
the design variable x. For practical problems NT is prohibitively
large and as a result an exhaustive search for the best solution is
not possible. Metaheuristic algorithms that selectively and intelli-
gently explore this large design space are the method of choice.
The objective function is limited by the inequality constraints
giðxÞ which can be any combination of design strength, inter-story
drift, top drift and constructability constraints. In Eq. (1) m is the
total number of constraints considered.

The design strength constraint equations are taken from AISC–
LRFD specifications [11] and are of the form:
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