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a b s t r a c t

The use of Fixed Point Theory (FPT) to optimize the design of coupling beams in coupled core wall (CCW)
systems is demonstrated. The basis for optimization is minimizing the transmissibility of horizontal
ground motion by appropriately linking two coupled wall piers having different dynamic properties with
beams having appropriate stiffness and damping characteristics. Using 21 example CCW structures illus-
trating a range of pier properties, it was shown that the resulting optimization of coupling stiffness is
quite small and other design considerations will require stiffer, non-optimal coupling beams.
Nonetheless, the potential to leverage the small amount of coupling available in a ‘slab-coupled’ series
of wall piers in order to reduce transmissibility is suggested by the findings of this study.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Hull and Harries [1] identified Fixed Point Theory (FPT) as hav-
ing potential applications to the performance-based design (PBD)
of coupled core wall (CCW) systems. They identified the potential
transition from CCW behavior under service lateral loads to a sys-
tem of linked wall piers (LWP) under design seismic loads. Their
work focused on the performance of the LWP system. Hull and
Harries proposed a novel measure of performance: minimization
of transmissibility of horizontal ground motion through the opti-
mization of coupling beam stiffness resulting in the optimal
engagement of two wall piers. Transmissibility is simply defined
as the ratio of structural deflection to input horizontal ground
motion. With the exception of very stiff structures, transmissibility
is typically greater than unity. In a structure composed of multiple
linked structural elements, transmissibility is affected by the ratio
of dynamic properties of the coupled elements and the connection
between these. By varying the relationship between dynamic prop-
erties of elements, transmissibility may be changed. Structures
composed of dynamically identical components cannot be opti-
mized using FPT; in such a case transmissibility is only a function
of the sum of the element stiffnesses [1].

In this paper, the practical application of optimizing coupling
beam stiffness between dynamically dissimilar wall piers using
FPT will be investigated. The hypothesis being that the stiffness

of the coupling beams for a given set of wall piers may be opti-
mized to improve the CCW and subsequent LWP response to earth-
quake excitation. As shown in Fig. 1, each wall pier is idealized as a
single degree of freedom (SDOF) system having mass, stiffness and
damping, mi, ki and ci. The stiffness and damping (kb and cb, respec-
tively) of the coupling continuum are represented by a spring and
dashpot system and may be optimized so as to minimize lateral
deflections X1 and X2 for a ground excitation U [2].

In this study, CCW prototype structures similar to those previ-
ously identified by Harries et al. [3] are used. These are 12-storey
structures that have seven individual pier geometries labeled A
through G, shown schematically in Table 1. The thickness of the
wall piers is 0.35 m and the uniform storey height is 3.6 m. The
other dimensions and resulting wall pier areas and moments of
inertia are presented in Table 1. The coupling beam geometric
information is not relevant at this point; indeed, this analysis is
intended to lead to coupling beam stiffness requirements. The indi-
vidual wall piers are paired into two-pier CCW systems, each pier
is matched with each other pier resulting in 28 unique analysis
cases. Optimal coupling of identical wall piers based on transmis-
sibility is meaningless (i.e.: Wall A coupled to Wall A); thus the
number of unique analyses is 21. For example, case 16 (Wall D cou-
pled to Wall E) is shown in Fig. 2.

2. Derivation of the equivalent SDOF structure

In order to model each MDOF wall pier as a SDOF system, it is
represented by a massless beam–column member supporting a
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lumped mass at the top (Fig. 1). Each beam–column is assigned
geometric and material properties of the wall pier. The eigenvector
method [4] is used to establish the equivalent SDOF mass. For each
analysis case, the mass of the MDOF wall pier takes the form of a
diagonal mass matrix, Mi, with the diagonal values representing
the portion of the storey mass assigned to each wall pier, i, based
on its relative sectional area.

Each MDOF cantilever wall pier is assumed to have a fixed base
and a single DOF at each floor level. The resulting stiffness matrix
for each wall is therefore:

Ki ¼

2kiX �kiX 0 . . .

�kiX 2kiX �kiX 0
0 �kiX 2kiX

. . . 0 2kiX �kiX

�kiX kiX

2
6666664

3
7777775

ð1Þ

In which the lateral stiffness associated with each floor, X, of
each wall, i, is kiX = 12EIiX/h3.

The eigenvalues, xin, representing the natural frequencies, and
the eigenvectors, uin, representing the solution to the undamped
free vibration equation of each wall, Mi

€X + KiX = 0, are calculated.
The effective equivalent SDOF modal mass of each wall, Min, corre-
sponding to each mode, n, is [5]:

min ¼
PN

i miuin

� �2

uT
inMiuin

ð2Þ

where N is the number of degrees of freedom (storeys) in the MDOF
structures, and mi is the storey mass associated with each DOF. The
equivalent SDOF stiffness of each wall, Kin, is defined as [5]:

kin ¼ x2
nmin ð3Þ

For the present study, only the fundamental natural frequency
is considered; thus n = 1 in all equations. Due to the assumed ver-
tical uniformity of the wall piers, considering only the first mode
results in a modal participation factor equal to greater than 0.90
in all cases [6].

3. Fixed point theory

Using the SDOF systems derived in the previous section, FPT is
used to determine optimal values of coupling stiffness, kb, and
damping, cb, that result in the lowest transmissibility for the
2DOF system shown in Fig. 1. The transmissibility is defined as
the ratio of the structure top displacement (xi) to the displacement
induced by the ground motion (u). The complete derivation of the

k
c

1

1

k
c

2

2

x1 x2

m1 m2

kb

cb

uu

Wall 1 Wall 2

eigenvector
method

Fig. 1. Idealized 2DOF system for application of fixed point theory (adapted from [1]).

Table 1
Wall pier dimensions used in FPT analysis [3].

Wall Wall flange (hwall) Wall web (lwall) Gross wall area (Ag) Gross wall inertia (Ig) Wall geometry
m m m2 m4

A 7.00 9.00 7.80 40.20
B 6.00 3.00 5.01 18.00
C 4.00 3.00 3.60 5.83
D 5.00 6.00 5.35 13.86
E 3.00 6.00 3.96 3.32
F 3.00 3.00 2.91 2.61
G 4.00 9.00 5.70 8.51

Fig. 2. Example of prototype CCW Plan: Case 16: coupled Walls D and E.
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