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a b s t r a c t

In the paper, an identification approach based on a Genetic Algorithm (GA) is applied to the case study of
a base-isolated, post-tensioned concrete bridge investigated in earlier contributions of literature. It is
known that bearing isolators greatly influence the overall response of small- and medium-span bridges
under dynamic loads, but in previous works it was seen that the characterisation of their elastic stiffness
under small displacements may be inaccurate. In this work, based on in-situ test measurements obtained
under static and dynamic loading conditions, inverse techniques based on GAs are successfully applied to
the examined structural system, providing an efficient and well-calibrated structural identification of its
main properties. Compared to other identification tools and classical correlation techniques, the main
advantage deriving from the use of inverse approaches based on GAs typically manifests in the possibility
to estimate a greater number of material parameters (e.g. properties of concrete as well as stiffness of the
bearing isolators, etc.), and to critically assess the accuracy of the identification. Based on rather good
correlation between test measurements and finite element (FE) model updating, it is expected that the
same technique could be applied to various structural typologies and systems.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The maintenance, safeguard and health monitoring of civil
structures and bridges represent a topic of large interest for
researchers, owners and users. Existing structures need to be
assessed according the prescriptions of modern building codes;
new constructions can benefit from the possibility of detecting
any damage or loss of performance offered by continuous monitor-
ing. In both cases, the analysis generally involves accurate numer-
ical modelling of the structure, which must be calibrated according
to the actual response (model updating) when it is excited by
dynamic or static loads. A crucial step in the mechanical calibration
of FE-models could derive, for example, from uncertainties on the
actual boundary conditions, hence resulting in improper mechani-
cal description of materials and inaccurate numerical investiga-
tions. This is the case of base-isolated structures, and specifically
base-isolated bridges, where bearing-isolators are usually used to
provide appropriate ultimate displacements under seismic events
[1–5]. While the mechanical characterisation of these isolators
under high-strain loads is typically provided by producers
(e.g. [6]), however, it is well-known that ‘‘in-situ’’ static and

dynamic tests carried out on bridge structures could induce in
them maximum deformations markedly lower than their expected
ultimate performances, hence resulting in difficult estimation and
assessment of the effective in-plane horizontal stiffness provided
by the isolation system. Structural identifications discussed in [7]
for base-isolated bridges, for example, resulted in a satisfactory
behaviour of the seismic isolators, but in identified bearing stiff-
nesses significantly higher than the reference experimental values.
The lack of correlation between identified and experimental stiff-
ness (and damping parameters) was justified in that case both by
the application of low-strains only (e.g. magnified friction mecha-
nisms and uncertainty in their estimation), and by the interference
of non-structural components on the response of the whole
structural systems or structural anomalies not taken into account
during the design stage.

The calibration of material parameters and boundary conditions
in numerical models can be performed by using the results from
dynamic and static tests. The experimental modal analysis can be
accomplished with three major testing procedures: ambient vibra-
tion [8], forced vibration [9] and free vibration [10]. A review of
these three approaches may be found in [11]. Whichever testing
procedure is used, some responses are measured and then used as
input for the parameter calibration. Three basic types of data are
used in dynamic identification: time domain, frequency domain
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and modal model. During experimental modal analysis, the sampled
time-series data are processed into the frequency response function
(FRF) data. These frequency data are then further processed by curve
fitting to obtain the modal model, namely the natural frequencies,
damping ratios and mode shapes. Data from each of these steps
may be used in the identification: see for example [12]
(time-domain data), [13] (FRF data) and [14] (modal data). Static
tests have comparatively less variety in the post-processing, since
the measured responses are directly used in the calibration [15].

The identification process is carried out by inverting the for-
ward operator, which links some parameters of the numerical
model to the measured response. Since the explicit analytical
inversion is not always possible, the solution is usually attained
by solving an optimisation problem in which a discrepancy
between experimental and computed data is minimised. In the lit-
erature, this approach is widely used in the field of deterministic
inverse problems: differences exist in the formulation of the
discrepancy (or cost) function to be minimised [16] and in the
minimisation algorithm.

In this work, an approach for the characterisation of the main
model parameters of an existing post-tensioned concrete,
base-isolated bridge, based on the minimisation of a discrepancy
function by means of a Genetic Algorithm (GA), is proposed. It
makes use of the experimental data from the static tests and the
dynamic properties (frequencies and modes) extracted via experi-
mental modal analysis previously described in [17]. It is shown
how different sources of information may be embedded within
the same procedure for both dynamic and static identification.
Unlike [17], where a simplified analytical procedure was proposed
in order to estimate the stiffness of the isolators, here the set of
unknown parameters is enlarged as to include Young modulus
of the concrete constituting piers and deck, and the identifiability
of all parameters is assessed by studying the relationship between
the discrepancy function value and each parameter. Different
formulations for the dynamic discrepancy function are proposed
and critically discussed, and the differences in the results reason-
ably explained.

2. The identification process

Let us be given a physical system and a mathematical model
describing it. The identification process consists of finding some
parameters (constitutive parameters, boundary conditions, etc.) p
of the mathematical model that give a ‘‘computed’’ response as
close as possible to the experimental one. The ‘‘closeness’’ is made
explicit by the definition of a discrepancy (or cost) function which
measures the discrepancy between the two responses. Thus, the
problem can be seen as an optimisation problem, in which the
discrepancy function must be minimised in the process.

Some aspects are worth to be pointed out:

– The mathematical (numerical or analytical) model must be as
representative as possible of the real behaviour of the structure.
Any important feature affecting the response must be properly
represented: anisotropy, nonlinear behaviour, boundary condi-
tions, position and magnitude of masses, etc. A usual choice in
engineering identification problems is to model the structure
using a finite element (FE) discretization.

– The experimental setup must significantly involve the sought
parameters, i.e. the sensitivity of the response to the variation
of the parameters must be sufficiently high.

– All experimental data are affected by errors, and this must be
accounted for in the definition of the response to be measured,
in their post-processing (if needed) and in the accuracy of the
results of the identification process.

– The analytical form of the discrepancy function xðpÞ must take
into account different precision of instrumentation when differ-
ent types of measured variables are considered (loads, displace-
ments, strains, frequencies, etc.). In the simplest form, it reads:

xðpÞ ¼ RT WR ð1Þ

with R = yc(p) � ym being the residual vector between some
measured variables ym

i , with i = 1, . . ., N (N number of measure-
ments) and the computed counterparts yc

i , that are obtained for a
chosen set of trial parameters p. W is a weight matrix that
accounts for the correlation between response variables and
the measurement scattering.

– Finally, the optimisation algorithm influences the accuracy of
the results since, according the well-known ‘‘no free lunch the-
orem’’ [18], no algorithm is suitable for all problems. The pres-
ence of local optima, discontinuities in the function or in its
derivatives can make the problem not solvable for some of
them.

Each of these points will be exploited in this work. In particular,
the optimisation algorithm is described in Section 3; the
experimental setup and the FE model describing the structure
are described in Sections 4.1 and 4.2, and a discussion about the
sensitivity of the response on the sought parameters, the use of dif-
ferent discrepancy functions, the role of errors in the recorded data
is presented together with the numerical application in Section 4.3.

3. The Genetic Algorithm

In order to solve the identification problem by minimising
Eq. (1), a numerical iterative procedure must be used. To this aim,
some of the most widely used approaches are gradient-based
methods, such as Line Search [19] or Trust Region [20], which solve
the problem by finding a stationary point of the discrepancy func-
tion. This strategy involves the computation of the Jacobian matrix
of a solution candidate at each iteration and updating the point in
the iterative process. Although computationally appealing, since
the number of forward evaluations is generally rather low, these
methods are local in scope, and can fail when the continuity and
even the convexity of the cost function are not strictly satisfied
in the search space. In this respect, global methods as Genetic
Algorithms [21] are more general and they have been effectively
employed in identification problems in previous research
[22–25]. In addition to overcoming the mentioned drawbacks of
gradient-based methods (by escaping local optima and not making
use of derivatives), in this paper it will be shown that, in the GA
framework, it is possible to qualitatively assess the identifiability
of a parameter by studying the convergence process and the
parameter–discrepancy function plots.

The main idea of this well-known approach is to let a population
of several candidate solutions (individuals) evolve in the search of
the optimum, throughout a certain number of generations. Com-
pared to gradient-based algorithms, in which a single solution is
updated in the search for the optimum, the use of populations of
candidate solutions completely changes the perspective of the
optimisation process. Clearly, the computational effort is usually
higher in the GA approach, since one iteration consists of the
evaluation of the discrepancy function for each individual in
the population instead of a single candidate. On the other hand,
the convergence may be seen as a process in which the population
reduces its size in the parameter and fitness spaces, being
distributed in the last generation around the best individuals
[26]. The converged population distribution, thus, carries some
information about the well-posedness of the problem, the number
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