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a b s t r a c t

Markov chain Monte Carlo (MCMC) simulation is applied for model updating of the coupled-slab system
of a building structure based on field test data following the Bayesian theory. It is found that the identi-
fiability of the model updating problem depends very much on the complexity of the class of models. By
MCMC, the same algorithm can be used no matter the model updating problem is locally identifiable or
not. The posterior joint probability density function (PDF) of model parameters is derived with consider-
ation of the uncertainties from both the measurement noise and modeling error. To obtain a posterior
PDF that is not analytically available in the complicated parameter space, an MCMC algorithm is pro-
posed to sample a set of models in high-probability regions for the representation (or approximation)
of the posterior PDF. The sampling process is divided into multiple levels, and individual bridge PDFs
are constructed at each level that finally converged to the target posterior PDF. The samples move
smoothly through each level and finally arrive at the important region of the target posterior PDF. A novel
stopping criterion for the MCMC algorithm is proposed from the insight of the derivation of the posterior
PDF. In the field test verification, the posterior marginal PDFs conditional on two model classes are
obtained by the proposed MCMC algorithm, which provide valuable information about the identifiability
of different model parameters.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In structural engineering, great efforts have been made to
develop sophisticated computer models of structures not only for
the prediction of responses but also to provide insight into struc-
tural behavior for improvement of the structural design under var-
ious configurations. For these purposes, the structural model must
be highly accurate to represent the behavior of the target structure.
No matter how sophisticated the computer model is, modeling
errors do exist. They come from various sources and can be catego-
rized into three types. The first consists of mathematical modeling
errors caused by the simplification of complicated real structural
behaviors. These errors include simplifications in boundary condi-
tions, connections, and geometric shapes. The second type consists
of model order errors caused by the discretization of the continu-
ous system to form a finite-element model (FEM). The third type
consists of physical parameter errors caused by errors in the
assignment of values to various model parameters (e.g., the
Young’s modulus of concrete that may not necessarily be a

constant throughout the entire structure and the spring constant
for capturing the semi-rigid behavior of structural joints). Struc-
tural model updating is crucial for obtaining accurate models when
the measured structural responses are available. In addition, struc-
tural model updating is widely applied for damage detection [1–6]
and structural health monitoring [7–11]. The methods for model
updating can be categorized into deterministic and probabilistic
methods.

The development of deterministic model updating methods is
relatively mature [12]. Ahmadian et al. [13] investigated regular-
ization methods for model updating, including those based on sin-
gular value decomposition, cross-validation, and L-curves. Jaishi
and Ren [14] treated model updating as a constrained optimization
problem, which minimized the discrepancy between the measured
and model-predicted responses. In Jaishi and Ren’s work [14], the
objective function was formulated by considering frequency resid-
ual, mode shape-related function, and modal flexibility residual.
Their method was verified using the ambient vibration data of a
bridge. Other examples of deterministic methods can be found in
Refs. [15–17]. Although deterministic methods have been
successfully applied, there are some limitations. Most determinis-
tic methods try to pinpoint a single solution and ignore other
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possible solutions resulting from the incomplete nature of mea-
surement and the problem of modeling error. Moreover, the uncer-
tainties associated with the results of model updating are not
explicitly considered in deterministic methods.

Model updating is usually an ill-conditioned inverse problem in
practice. For instance, the measured modal data are incomplete,
implying that the full set of degrees-of-freedom (DOFs) presented
in the computer model cannot be completely measured and that
only a small portion of the modes can be identified. As a result,
the solution may be nonunique or even unidentifiable. Modeling
and measurement errors always induce a different order of uncer-
tainties to a model updating result. Bayesian model updating
methods provide a rational way to handle the aforementioned
problems by incorporating a probability model. When the situation
is globally or locally identifiable [18], the posterior probability den-
sity functions (PDFs) of the uncertain model parameters could be
represented by the weighted sum of multiple Gaussian PDFs cen-
tered at finite isolated points. The marginal PDFs of the uncertain
model parameters can be obtained by Gaussian approximation
[19]. These isolated points are the ‘‘optimal models” in determinis-
tic methods. Identifiability issues were later addressed in a unified
manner [20]. It was found that for locally identifiable cases, equally
important models would give different responses at the unob-
served DOFs, indicating that the use of only one of these models
was unreliable. An algorithm was developed to efficiently search
the high-dimension parameter space using a network of trajecto-
ries to find all output-equivalent optimal models.

The Bayesian method in [18] used Gaussian distribution for
approximation of the posterior PDF. When the levels of measure-
ment noise and modeling error are high, approximation by
Gaussian distributions is not necessarily accurate. To overcome
this difficulty, Katafygiotis et al. [21] generated a series of well-
structured points in the important region of parameter space in
which the value of the posterior PDF was higher than a predefined
threshold value (i.e., the subset of models with relatively high
posterior PDF value). One advantage of this method is that the
points generated in the important region are approximately
equally spaced. Once this set of points is available, the approxima-
tion of the posterior PDF is straightforward and very accurate.
However, the amount of computational effort grows as the number
of uncertain model parameters increases. The practical application
of this method is prohibited by its computational efficiency
when the target structure is complicated with many uncertain
parameters.

In this article, the finite element model of a coupled-slab system
was updated using modal parameters identified from an ambient
test [22,23]. For the real applications of model updating, the effects
of both modeling error and measurement noise are relatively large
when compared to numerical example or experimental case study
under laboratory conditions, and the posterior uncertainties are
usually high. For a given set of measurement, the model updating
problemmay change from identifiable to unidentifiable if the com-
plexity of the model class is increased. The MCMC algorithm
[24,25] provides a convenient way to calculate the posterior PDF
of uncertain parameters no matter the problem is identifiable or
unidentifiable. There are applications of MCMC for model updat-
ing. In Ref. [26], MCMC is applied to compare two stochastic model
updating methods, namely covariance and interval model updat-
ing. The comparison is based on the measured modal parameters
of a simplified aircraft model. In Ref. [27], the shadow hybrid
Monte Carlo (SHMC) is proposed to overcome the limitation of
hybrid Monte Carlo (HMC). The performance of SHMC for model
updating is verified on an unsymmetrical H-shaped structure and
a simplified aircraft by using the measured natural frequencies.
The transitional Markov chain Monte Carlo (TMCMC) algorithm
[25] is applied in [28] to investigate the uncertainties in Bayesian

model updating. The framework proposed in [28] can reasonably
predict the posterior uncertainties in model updating. The paral-
lelized TMCMC is proposed in [29] to increase the computational
speed. Two aerospace structures, the antenna reflector and satel-
lite, are used to verify the proposed model updating method. The
neural network is applied to reduce the computational time of
the full finite element analysis. The verification results are encour-
aging. When compared to the TMCMC method, the proposed
method adopted a different way to control the samples in each
sampling level to approach the important regions of the posterior
PDF. Furthermore, the proposed formulation of the target PDF in
the Metropolis–Hastings (MH) algorithm is also different from that
in the TMCMC method. It must be pointed out that most existing
research work on the use of MCMC in structural model updating
or structural health monitoring, the target structures are usually
numerical examples [30] or simple experimental case studies
under laboratory conditions [31]. In this study, a coupled-slab
system of a building structure is considered, and the model updat-
ing is based on a set of measured modal parameters, which were
obtained through an ambient test under the normal operation of
the building. This represents a real application example of MCMC
based Bayesian model updating. Considering that structural health
monitoring of civil engineering structures has been widely studied
[32–34], this important step is certainly helpful for the applica-
tion of structural model updating in long-term structural health
monitoring of civil engineering structures, such as buildings.

In this study, a Markov chain Monte Carlo (MCMC) algorithm is
proposed for Bayesian model updating, which is conducted by
sampling from the posterior PDF. The sampling process is divided
into multiple levels to explore the parameter space efficiently. This
multilevel idea is similar to simulated annealing and was applied
by Beck and Au [24] for Bayesian model updating of a two-story
shear building model based on simulated data. A novel stopping
criterion is developed in this study to improve the method in
[24]. Kernel density estimation [35–37] is performed to efficiently
obtain the posterior marginal PDFs for prediction of the posterior
uncertainties. The practical value of the proposed method is
demonstrated by its application in a coupled-slab system based
on field test data. In the field test verification, the enhanced MCMC
algorithm is applied two times for approximation of the posterior
marginal PDFs of uncertain parameters conditional on two model
classes. The case study showed that valuable information about
the identifiability of the model updating problem and the corre-
sponding model parameters could be obtained by the approxi-
mated posterior marginal PDFs.

2. The enhanced MCMC algorithm for Bayesian model updating

In the proposed algorithm, a posterior PDF that considers the
effects of both measurement noise and modeling error is first
derived. A multilevel sampling scheme is next introduced to gener-
ate samples for the approximation of the target posterior PDFs. A
novel stopping criterion is proposed to allow accurate estimation
of the posterior uncertainty. Finally, the procedures of the pro-
posed algorithm are summarized for practical applications.

2.1. Formulation of posterior PDF

The formulation of the posterior PDF of the set of model param-
eters to be identified is needed before samples can be generated by
the MCMC algorithm. By following the Bayesian theorem, the pos-
terior PDF of the uncertain model parameter vector x conditional
on the measured modal data D can be formulated as

pðx Dj Þ ¼ pðD xj ÞpðxÞ
pðDÞ ð1Þ
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