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a b s t r a c t

Modern metaheuristic algorithms are in general suited for global optimization. This paper combines the
recently developed eagle strategy algorithm with differential evolution. The new algorithm, denoted as
the ES–DE, is implemented by interfacing SAP2000 structural analysis code and MATLAB mathematical
software. The performance of the ES–DE is evaluated by solving four benchmark problems where the
objective is to minimize the weight of steel frames. The optimized designs obtained by the proposed algo-
rithm are better than those found by the standard differential evolution algorithm and also very com-
petitive with literature. The overall convergence behavior is significantly enhanced by the hybrid
optimization strategy.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Metaheuristic algorithms represent a popular approach to the
solution of complicated nonlinear optimization problems [1–3].
However, while most algorithms show a relatively high efficiency
in approaching the best region of design space, there is no optimiza-
tion formulation inherently able to always find the global optimum.
Current research on metaheuristic algorithms hence focuses on
increasing/improving their capability to carry out global search
and find the global optimum (or some designs very close to it).

The efficiency of metaheuristic algorithms derives from the fact
that they are designed to imitate the best features in nature inspir-
ing to different sources (for example, bio-inspired krill herd [4],
physics-inspired charged system search [5], music-inspired har-
mony search [6] etc.). Biological systems are the main source for
proposing new nature-inspired metaheuristic approaches because
the selection of the fittest in biological systems has evolved by nat-
ural selection over millions of years. There exist some algorithms
for stochastic optimization such as, for example, the Eagle
Strategy (ES) developed by Yang and Deb [7].

Frame design is one of the popular structural optimization
benchmarks with a diverse range of design flexibility [8], and such

design problems can be a mixed type. For frame structures applica-
tions, some modifications to the optimization algorithms are often
required. Therefore, researchers have attempted to solve frame
structures as a real-world, discrete-variable and nonlinear opti-
mization problem using different methods [9]. The objective in
these problems is usually minimizing the frame weight under
complex nonlinear constraints [10–13]. The design variables of
interest in frame structures are cross sections of beams and col-
umns, which have to be chosen from standardized cross sections
[14], and thus leading to discrete and mixed type of optimization.

This paper describes a hybrid metaheuristic algorithm combin-
ing the ES and Differential Evolution (DE). The new algorithm,
referred to as the ES–DE in the rest of the paper, is a two-stage
search method. The ES–DE is tested in four classical weight
minimization problems of frame structures. The optimization algo-
rithm is implemented by interfacing MATLAB with the SAP2000
structural analysis code. Optimization results are compared with
the standard DE and other methods documented in literature. It
appears that the proposed approach is very effective in frame
design optimization.

2. Frame optimization problems

Optimal design of frame structures can be formulated as

Find X ¼ ½x1; x2; . . . ; xng �
to minimize MerðXÞ ¼ f ðXÞ � f penaltyðXÞ

ð1Þ
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where X is the design vector of the cross sectional areas of W sec-
tions; ng is the number of design variables or the number of mem-
ber groups; Mer(X) is the merit function; f(X) is the cost function
which is usually taken as the weight or volume of the structure;
fpenalty(X) is the penalty function which results from the violations
of the optimization constraints on structural response.

The cost function, f(X) in the form of the total weight of the
frame structure can be expressed as:

f ðXÞ ¼
Xnm

i¼1

ci � xi � Li ð2Þ

where ci is the material density of i-th member and Li is the length
of i-th member; nm is the number of members making up the
frame.

The penalty function, fpenalty(X), can be defined as [15]:

f penaltyðXÞ ¼ ð1þ e1 � tÞe2 ; t ¼
Xn

i¼1

max½0; ti� ð3Þ

where n represents the total number of constraints for each indi-
vidual design. The constants e1 and e2 are selected, depending on
the exploration and the exploitation rate of the search space. If
stress/displacement constraints, ti, turn positive, the corresponding
values taken by constraint functions are added as penalty terms.
These constraints contain:

Element stresses

tr
i ¼ 1� ri

ra
i

����
���� � 0; i ¼ 1;2; . . . ;nm ð4Þ

Maximum lateral displacement

tD ¼ R� DT

H
� 0; ð5Þ

Inter-story displacements

td
j ¼ RI �

dj

hj
� 0; j ¼ 1;2; . . . ; ns ð6Þ

where ri is the stress in i-th member; ra
i is the allowable stress in i-

th member; DT is the maximum lateral displacement; H is the
height of the frame structure; R is the maximum drift index; dj is
the inter-story drift; hj is the story height of the jth floor; ns is the
total number of stories; RI is the inter-story drift index permitted
by the standard design code in engineering practice.

Following AISC 2001 [16], the allowable inter-story drift index
is set as 1/300. The LRFD interaction formula constraints
(Equation H1-1a,b of AISC 2001) are stated as

tI
i ¼ 1� Pu

2/cPn
� Mux

/bMnx
þ Muy

/bMny

� �
� 0 For

Pu

/cPn
< 0:2 ð7Þ

tI
i ¼ 1� Pu

/cPn
� 8

9
Mux

/bMnx
þ Muy

/bMny

� �
� 0 For

Pu

/cPn
� 0:2 ð8Þ

where Pu is the required strength (tension or compression); Pn is the
nominal axial strength (tension or compression); /c is the resis-
tance factor (/c = 0.9 for tension, /c = 0.85 for compression); Mux

and Muy are the required flexural strengths in the x and y directions;
respectively; Mnx and Mny are the nominal flexural strengths in the x
and y directions (for two-dimensional structures, Mny = 0); and /b is
the flexural resistance reduction factor (/b = 0.90).

To compute compression and Euler stresses, the effective length
factors K are required. For beam and bracing members, K is taken
equal to unity. For column members, K values are calculated by
SAP2000. However, the following approximate effective length for-
mulas can also be used based on Dumonteil [17], which are accu-
rate within �1.0% and +2.0% [18]:

For unbraced members:

K ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:6GAGB þ 4ðGA þ GBÞ þ 7:5

GA þ GB þ 7:5

s
ð9Þ

For braced members:

K ¼ 3GAGB þ 1:4ðGA þ GBÞ þ 0:64
3GAGB þ 2ðGA þ GBÞ þ 1:28

ð10Þ

3. Eagle strategy

Eagle strategy developed by Yang and Deb [7] is a two-stage
method for optimization. In nature, ‘‘eagles hunting for prey’’ is a
search process, and this process typically has two stages: a roaming
stage and a chasing stage. During the roaming stage, an eagle
searches a large but sparse area. Once a prey is seen, it switches to
an intensive chasing stage so as to get to the prey as quickly as pos-
sible. This two-stage strategy can be formulated as a two-stage
search algorithm, called eagle strategy, in which the first stage
explores a large search area, while the latter stages focus on the
quicker search steps. Eagle strategy uses a combination of a crude
global search and an intensive local search with a proper balance
of different algorithms to suit different purposes. In essence, the
strategy first explores the search space globally using a Lévy-flight
random walk. If a promising solution or a set of efficient designs is
found, then an intensive local search is carried out by using a more
efficient local optimizer such as hill-climbing and downhill simplex
method. Then, this two-stage process restarts again with a new
global exploration, followed by a local search in a new or more
promising region.

The first stage is to generate solutions in the search domain
using Lévy flights. That is:

Xt
i ¼ X� þ cLðsÞ; LðsÞ 	 bCðbÞ sinðpb=2Þ

p
� 1
s1þb

; s
 0; ð11Þ

where 	means that L(s) is drawn the above Lévy distribution when
step sizes are big enough with the exponent b = 1.5. Here c = 0.01 is
often used as a scaling parameter; X⁄ is the best solution found so
far.

The advantage of such a combination is to use a balanced trade-
off between a global search (which is often slow) and a fast local
search. Balance of search mechanisms and parameter tuning are
usually important for metaheuristic algorithms. Another advan-
tage of the two-stage optimization strategy is that one can choose
any algorithm at each stage or even within the current iteration.
This makes it easier to combine strength points of different algo-
rithms to improve the optimization search. Fig. 1 presents a simpli-
fied pseudo-code of the ES process. It can be seen that the global
and local searches are controlled by different loops. In particular,
the global search is carried out in the outer loop, while the inten-
sive local search is performed in the inner loop. In summary, the
local search is based on the best solution found by the global
search and analyzes the promising regions of the design space try-
ing to converge to the global optimum as quickly as possible.

It should be noted that the ES is more than an optimization
algorithm. In fact, one can use the most suited algorithm for each
stage/iteration of the optimization process. The global search algo-
rithm should include enough randomness to explore design space
diversely and effectively. The global search may be slow in the ear-
ly stages of the optimization process but should become faster as
we approach to the optimum design. The local search stage should
utilize a highly exploitative algorithm in order to find the best
designs localized in a restricted region of the design space within
a small number of function evaluations.
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