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a b s t r a c t

The state of stresses in non-homogeneous bars due to eccentric axial loads is examined. The governing
formulae are written in coordinate free invariant forms by means of vector and tensor algebra. The con-
cepts of centric and eccentric axial loads for non-homogeneous bars are introduced. A general solution is
developed to obtain the kern of cross section of arbitrary shape. Examples show how the results derived
can be applied to determine the kern of a given inhomogeneous cross section.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In dams, retaining walls or mansonry structures the designer is
interested in determining the portion of cross section through
which a compressive force can be applied without causing any ten-
sion at any point in the cross section. Such portion is called the
kern (or core) of the cross section. The concept of kern has several
applications in engineering practice [10,13–15,17]. The kern of a
cross section is an old concept in mechanics of materials. This con-
cept was first introduced by a French engineer Bresse in 1854
[8,11]. The concept of kernel of a cross section was widely used
for pre-stressed concrete columns [9], beam supports [2], concrete
dams [10] and a special case of S polygon [14,15,17]. Many text-
books and handbooks of mechanics of materials give a brief
description on the concept of kern and they present the determina-
tion of the kern for very simple cross sections [7,12,18]. Wilson and
Turcotte [16] gave a numerical method for determining the kern of
general cross section. They approximate a general cross section
with a polygon and then the kern of this polygon considered as
an approximation of the kern of the original cross section. A paper
by Mofid and Yavari [4] presents some theorems which describe
the properties of the kern of a general cross section with arbitrary
shape. Using these theorems the shape of the kern of a general
homogeneous cross section can be obtained. Based on theorems
of Mofid and Yavari [4] an algorithm is constructed in [5] which
can be used to get the kern of any cross-section numerically. Paper

[6] presents a very simple and practical analytical technique to
determine the kern of an arbitrary cross section.

The present paper is concerned with non-homogeneous short
prismatic bars loaded by axial load. By using a Bernoulli–Euler type
beam theory a simple solution is obtained for combined extension
(compression) and bending of bars with arbitrary cross section. The
elastic modulus does not depend on the axial coordinate, i.e., the
considered bar is axially homogeneous. This type of inhomogeneity
is called cross sectional inhomogeneity. Vector-tensor formulation
is used to analyse the problem of eccentrically loaded non-homo-
geneous bars. The formulation of the problem is given in coordi-
nate free invariant form. A general solution is developed for
arbitrary shape of the non-homogeneous cross section to obtain
its kern. Papers [4–6,16] and books [2,7,8,12,18] did not use
the vector-tensor formulations and they did not consider the
non-homogeneous cross sections. The aim of this paper is to apply
the formulation of paper [1] to short prism under the action of
eccentric axial load. The concepts of centric and eccentric axial
loads will be introduced and analysed for non-homogeneous bars.
The equation of neutral axis (line of zero stress) and the kern of
non-homogeneous cross section of arbitrary shape will be
determined.

2. Formulation

Consider a straight bar of uniform cross section which has
cross-sectional inhomogeneity. This means that the modulus of
elasticity of the bar is the function of the cross-sectional coordi-
nates x and y, so that E ¼ Eðx; yÞ. This function may be continuous
or discontinuous. When the bar is made up of several laminates of
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different materials the modulus of elasticity for each laminate is
constant but these constants may vary from laminate to laminate.
In the case of functionally graded elastic materials, E is a smooth
function of the cross-sectional coordinates x and y. Let the origin
of the coordinate system Oxyz be the E-weighted center of the left
end cross section (Fig. 1) and let the planes of cross sections be par-
allel with the plane of axes x and y. In this case axis z connects the
E-weighted centers of cross sections and we say that the axis (cen-
ter-line) of the non-homogeneous bar is axis z and we have [1]Z

A
Eðx; yÞRdA ¼ 0; R ¼ xex þ yey: ð1Þ

In Eq. (1) A is the cross section of the non-homogeneous bar which
is a bounded plane domain (Fig. 2), E ¼ Eðx; yÞ is the Young modulus,
and ex; ey are unit vectors in x and y directions, respectively. The
axial direction of the bar is denoted by the unit vector ez. The
non-homogeneous bar is loaded by the axial loads F1 ¼ Fez and
F2 ¼ �Fez whose points of applications L1 and L2 are in the end
cross sections A1 and A2 (Fig. 1). According to Fig. 1 we can write

OL
�!

1 ¼ q1 ¼ aex þ bey þ lez ¼ qþ lez; OL
�!

2 ¼ q2 ¼ q

¼ aex þ bey: ð2Þ

The length of the bar is short, i.e., one so short that the effect of
deflection is negligible. In the case of compressive axial force the
stability problems are not considered. The stresses and strains are
the same in every cross section. Therefore it is enough to consider
only one cross section and to use only the cross-sectional coordi-
nates x and y. The deformation of the bar – according to the beam
theory of Bernoulli–Euler – can be described by the equation [1]

ez ¼ e0 þ jg: ð3Þ

In Eq. (3) ez is the normal strain at point Pðx; yÞ and e0 is its value at
the origin and j is the curvature of the fiber whose points coinci-
dent with axis z before deformation. The normal vector of the
planes of bent fibers is the unit vector n and m ¼ ez � n (Fig. 2).
In this case we have [1]

g ¼ m � OP
�! ¼ m � R: ð4Þ

In the equations written above cross denotes the vectorial product
of two vectors ez and n while the scalar product of m and R is
denoted by dot. The application of Hooke’s law leads to the formula
of normal stress rz

rz ¼ Eez ¼ Eðe0 þ jgÞ: ð5Þ

The resultant of normal stresses is as follows

F ¼ e0

Z
A

EdAþ j
Z

A
gEdA: ð6Þ

Let us put the origin of the cross-sectional coordinate system Oxy to
the E-weighted center of the cross section (O ¼ CE, Fig. 2). In this
case we get [1]

Z
A
gEdA ¼ 0: ð7Þ

The combination of Eq. (6) with Eq. (7) gives

e0 ¼
F
S
; S ¼

Z
A

EdA: ð8Þ

The definition of the stress vector tz yields the result

tz ¼ rzez ¼ Ee0ez þ Ejðm � RÞez ¼ Ee0ez þ Ejðez � ðn� RÞÞez; ð9Þ

i.e.,

tz ¼ Ee0ez þ Ejn� R: ð10Þ

The bending moment about point O ¼ CE is caused by the axial load
F ¼ Fez whose point of application Lða; bÞ is as follows (Fig. 2)

M ¼ OL
�!
� Fez ¼ Fq� ez: ð11Þ

The bending moment vector M can be computed in terms of stress
vector tz as

M ¼
Z

A
R� tz dA

¼ e0

Z
A

ERdA
� �

� ez þ j
Z

A
ER� ðn� RÞdA: ð12Þ

Since O ¼ CE, we have

M ¼ j
Z

A
ER� ðn� RÞ dA: ð13Þ

A simple calculation givesZ
A

ER� ðn� RÞ dA ¼
Z

A
Eð1R2 � R � RÞ dA

� �
� n: ð14Þ

In Eq. (14) 1 is the second order two-dimensional unit tensor and
the circle between two vectors denotes their tensorial (dyadic)
product. We introduce the concept of bending rigidity tensor of
the cross section with the following formula

J ¼
Z

A
Eðx; yÞð1R2 � R � RÞdA: ð15Þ

We note that, in paper [1] J is called the E-weighted inertia tensor of
non-homogeneous cross section A about point CE. Using Eq. (15) we
can write

M ¼ jJ � n: ð16Þ
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Fig. 2. The cross section of a non-homogeneous bar.
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Fig. 1. Non-homogeneous bar with axial load.
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