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a b s t r a c t

An innovative higher-order beam theory, capable of accurately taking into account flexural–shear–tor-
sional interaction, is originally combined with a force-based formulation to derive the corresponding finite
element. The selected set of higher-order deformation modes leads to an explicit and direct interaction
between three-dimensional shear and normal stresses. Namely, cross-sectional displacement and strain
fields are composed of independent and orthogonal modes, which results in unambiguously defined gen-
eralised cross-sectional stress-resultants and in a minimisation of the coupling of equilibrium equations.
On the basis of work-equivalency to three-dimensional continuum theory, dual one-dimensional higher-
order equilibrium and compatibility equations are derived. The former, which govern an advanced form of
beam equilibrium, are strictly satisfied via stress fields arising from the solution of the corresponding sys-
tems of coupled differential equations. The formulation, which is numerically validated in a companion
paper for both linear and nonlinear material response, inherently avoids shear-locking and accurately
accounts for span loads. Finally, the superiority of force-based approaches over displacement-based ones,
well established for inelastic behaviour, is also demonstrated for the linear elastic case.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Review of higher-order beam theories

The geometrical features of many structural engineering ele-
ments make it possible to construct a set of governing differential
equations which are considerably easier to solve than their com-
plex three-dimensional continuum counterparts. In particular,
beam theory is the simplest and simultaneously one of the most
widely employed structural mechanics theories. Classical beam
theory was initially based on the plane sections assumption, which
was stated by Hooke in the XVIIth century. Further developed in
the XVIIIth century by Bernoulli and Euler, such classical beam the-
ory is only applicable to slender beams since it neglects the effect
of shear deformation. It would not reach generalised engineering
application until the end of the XIXth century. Meanwhile, with a

view to the application to thick or deep beams, Rankine [1] and
Bresse [2] included the relaxation of the restriction on the angle
of shearing deformation, allowing the cross-section not to remain
perpendicular to the beam’s centroidal line, despite remaining a
plane section and rigid in its own plane. Following the work by
Timoshenko [3,4], this theory eventually was named after him.

It is well known that such classical beam theories, namely the
Euler–Bernoulli and Timoshenko ones, are often not sufficiently
accurate to predict the global member response and its internal
stress–strain state. For instance, in the Timoshenko beam theory
(TBT), the shear strain distribution is incorrectly assumed to be
constant throughout the beam height; considering a simple rectan-
gular cross-section, it does not respect the zero shear strain and
stress boundary conditions at its top and bottom. Therefore, a
shear correction factor is required to accurately determine the
strain energy of deformation. Mindlin and Deresiewicz [5]
computed such correction factor for a variety of beam cross-sec-
tions. Cowper [6], based on a pioneering integration of the three-
dimensional equilibrium equations to form beam governing
relations, obtained a new definition for the shear coefficient and
derived expressions for homogeneous, isotropic symmetric
cross-sections—see also Cowper [7]. An account of the early history
of the shear correction factor can be found in Kaneko [8]. Research
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on this field has continued throughout the following decades (e.g.,
Hutchinson and Zillmer [9]; Renton [10]; Hutchinson [11]) and up
to the present day (Dong et al. [12]). Within the framework of this
paper, classical beam theories are considered to be of the first-
order, i.e., the cross-sectional displacement fields are linear func-
tions on each of the cross-sectional coordinates.

However, shear deformation effects are best considered through
higher-order beam theories (HOBTs), wherein the axial displace-
ment field is represented by a power series expansion in the
cross-sectional coordinates, thus relaxing the constraint in the
cross-sectional warping. Therefore, out-of-plane displacements of
the cross-sectional points are allowed by using shape functions
for the cross-sectional axial displacements which are at least qua-
dratic in one coordinate or bilinear in both. Planar beam theories
can be found in the literature (Stephen and Levinson [13]) which
are similar in form to the TBT but account also for ‘‘shear curvature’’
and ‘‘transverse direct stresses’’, using those authors’ nomencla-
ture. The early work by Soler [14], wherein Legendre polynomials
were used for thick rectangular elastic isotropic beams, as well as
orthotropic beams (Tsai and Soler [15]), should be mentioned. This
family of polynomials was employed because their completeness,
convergence and orthogonality properties are well formulated. Fur-
thermore, the usual stress-resultants of classical beam theory
appear naturally. Even without previous knowledge of such
approach, similar reasons also guided the use of Legendre polyno-
mials in the theoretical developments of the present study.

Levinson [16] used a third-order beam theory satisfying zero
shear strain conditions at both the upper and lower edges of the
beam, obviating the need for the shear coefficient. The equations
of motion therein derived are not variationally consistent, which
was later corrected by other authors, either making use of
Hamilton’s principle (Bickford [17]) or the principle of virtual dis-
placements (Reddy [18]). The variational consistency of Bickford’s
theory does not necessarily seem to imply, however, superior accu-
racy (Rychter [19,20]). The Euler–Lagrange equations of motion in
Bickford’s theory are typically displayed in terms of displacements,
mechanical parameters (describing a linear elastic constitutive rela-
tion), and cross-sectional geometric properties (Petrolito [21]). Nev-
ertheless, it is naturally possible to express them in a format
wherein specific constitutive relations are not yet assumed (Reddy
[22]). Such arrangement has the advantage of showing immediately
the generalisation of stress-resultants that is required in higher-
order theories. For example, in Bickford’s theory the common defi-
nition of shear force gives place to a new definition of a higher-order
shear force, involving the cross-sectional integral of the shear stres-
ses; additionally, a higher-order moment of the normal stresses also
shows up. It should be pointed out, however, that it is possible to
construct HOBTs—such as the one herein proposed—wherein the
classical definitions of the stress-resultants are preserved.

Based on Bickford’s theory, a two-node beam finite element
with three degrees of freedom per node was later developed and
tested (Heyliger and Reddy [23]). Approximately at the same time,
Kant and Manjunatha [24]—and later Manjunatha and Kant
[25]—proposed beam theories with kinematic fields having
different orders of variation for both the longitudinal and trans-
verse displacements; the authors used Lagrangian four-noded
cubic elements with different number of degrees of freedom per
node (ranging from three to seven, according to the complexity
of the underlying theory).

The Lo–Christensen–Wu theory (Lo et al. [26,27]) is an elegant
theory that is widely used by researchers for the analyses of shear
deformable beams and plates; it expands the axial displacement
field as a cubic function in the thickness coordinate, while the
polynomial expansion for the transverse displacement is truncated
at one order lower. Vinayak et al. [28] and Prathap et al. [29] carry
out a systematic evaluation of the Lo–Christensen–Wu theory,

comparing the results of finite element analyses with available
closed-form classical and elasticity solutions.

The refined model by Kim and White [30], developed for both
thin- and thick-walled composite beams, is of interest since it
accounts for transverse shear effects of the cross-section and of the
beam walls, as well as primary and secondary warping. Rand [31]
devised a model to handle arbitrary solid cross-sections or general
thin-walled geometries; it considers five degrees of freedom, namely
three cross-sectional displacements, a twist angle and a 3D warping
function. The importance of the latter, which is made dependent on
the boundary conditions (unlike traditional beam theories), is dem-
onstrated in a subsequent study by the same author [32].

The number of proposals associated with composite beam mod-
elling is countless and can be found in the literature reviews of
Ghugal and Shimpi [33] and Volovoi et al. [34]. Nevertheless, more
recent works deserve to be mentioned. In particular, the variational
asymptotic beam sectional analysis (VABS) suggested by Yu et al.
[35] is of relevance; therein, instead of assuming a 3D warping dis-
placement, they compute it in terms of the 1D generalised strains.
Also, in the context of the use of trigonometric functions, a new
three-noded beam finite element was recently conceived by Vidal
and Polit [36] for the analysis of laminated beams.

A significant improvement over previous HOBTs was accom-
plished on the so-called ‘Carrera’s Unified Formulation’ (Carrera
and Giunta [37]), also known as CUF, by allowing the order of the
theory and, consequently, the number of cross-sectional displace-
ment modes it takes into account, to be a free parameter. In view
of the similarities to the current work and the additional fact that
it will be considered for comparison purposes, a short introductory
note on such formulation should be made. Originally applied to the
modelling of anisotropic plate and shell structures (Carrera [38]),
the method proposes a systematic manner of formulating axiomat-
ically refined beam models by choosing the desired order of the the-
ory. Using a concise notation for the kinematic field, the governing
differential equations and the corresponding boundary conditions
(BCs) are reduced to a ‘fundamental nucleo’ in terms of the dis-
placement components, which does not depend upon the approxi-
mation order. The finite element formulation of the CUF for beam
structures (Carrera et al. [39]) includes two, three and four-noded
elements—using respectively linear, quadratic and cubic approxi-
mations along the beam axis—with different higher-order models
for the cross-section displacement field. The displacement compo-
nents are expanded in terms of the cross-section coordinates using
Taylor-type expansions. The effectiveness of higher-order terms in
the context of the CUF is analysed in a subsequent work (Carrera
and Petrolo [40]), while its applicability to the free vibration of
rotating beams is carried out in a new study (Carrera et al. [41]).
A compilation of the beam formulations and results obtained with
the CUF was recently published (Carrera et al. [42]).

1.2. Finite element formulations and objective of the study

In the context of finite element formulations for solid mechan-
ics, it is well-known that low-order elements in classical displace-
ment approximations lead to unsatisfactory performance, which
can be due to either locking in the incompressible limit or to poor
accuracy (namely in bending-dominated behaviour). The use of
energy functionals representing multi-field variational principles
provide a natural setting for the formulation of mixed finite ele-
ment methods, and an approach to by-pass the aforementioned
problems. In a mixed method it is possible to independently
approximate all fields that exist in the functional, which opens
the door to interesting methods of analysis. In particular, the
three-field formulation proposed by de Veubeke [43,44] and com-
monly known as Hu–Washizu [45,46] allows to approximate the
displacement, stress and strain as independent variables (see also
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