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a b s t r a c t

An improved four-parameter model considering Poisson’s effect is presented to analyze interface stresses
of adhesively bonded joints. The existing theoretical models of adhesive joints analyze the adhesive layer
as a beam without considering Poisson’s effect, which violates the Hooke’s law and cannot satisfy the
compatibility condition of the adhesive layer; furthermore, the bending moment of the adhesive layer
is neglected by assuming the thin thickness of adhesive layer. To eliminate these flaws, the present study
models the adhesive layer as a 2-D elastic continuum in which both the Hooke’s law and equilibrium
equations are fully satisfied. The longitudinal strain caused by the transverse stress is also considered,
and it is proved to have a significant effect on the interface stress distributions. The present model regains
the missing bending moment of the adhesive layer which is absent in the existing models, and it satisfies
all the boundary conditions. The validity of the new model is demonstrated by its excellent agreements
with the results from the numerical finite element analysis when predicting the interface stress
distributions for the single-lap joints and CFRP-strengthened reinforced concrete beams, and the broader
applicability of the present model can be expected. The new model developed presents explicit
closed-form solutions for the interface stresses and beam forces, and it provides an accurate tool for
design analysis of adhesively bonded joints or interfaces.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Adhesively bonded joints are increasingly used in composite
structures to connect components because of their many advanta-
ges over other joining methods (e.g., the mechanical bolted joints).
However, a high stress concentration exists near the end of the
adherend–adhesive interface because of either the material or geo-
metrical mismatch or both, which accounts for the premature fail-
ure of designed structures due to debonding and peeling of the
joint. Therefore, accurate prediction of the interface stresses is sig-
nificant to avoid such premature failure. To this aim, numerous
theoretical and experimental studies have been conducted. Goland
and Reissner [11] modeled the adhesive layer as the continuously
distributed shear and vertical springs (the so-called G–R model). In
this model, both the shear and normal stresses were assumed to be
invariant along the thickness direction, and the adhesive layer was

modeled as a two-parameter elastic foundation. On this basis,
some simple explicit closed-form expressions of interface stresses
and beam forces were obtained by many researchers
[7,21,24,23,28,8,1,15,5,6,9,27,12]. The interface stresses predicted
by the two-parameter elastic foundation model reached good
agreements with the finite element analysis (FEA) as a whole
[25], and the maximum interface stresses were also captured.
However, obvious discrepancy was observed near the edge of the
adhesive layer.

To overcome this drawback, many refined models have been
developed. The finite element analysis [25] revealed that the shear
and peel stresses along the top interface (TA) are different from
those of the bottom interface (BA), and the discrepancy grows with
the increased thickness of the adhesive layer. Meanwhile, the stress
distribution becomes non-uniform when the adhesive layer is not
thin enough. To capture these non-uniform stress distributions
accurately, a full elasticity analysis should be applied to the adhe-
sive layer. Using this as a start point, a complete elastic model
was proposed by Radice and Vinson [20]. In this model, the Airy
stress potential was expanded into a polynomial series and the
coefficients were obtained using the Rayleigh–Ritz theory. How-
ever, this elastic model is too complex and does not result in the
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explicit expressions for the interface stresses. Thus, it can be seen
that it is difficult to find a complete elastic solution, and there is a
need to develop simple yet accurate explicit solution of adhesively
bonded interface models based on some reasonable assumptions.

To obtain the different peel stresses along different adherend–
adhesive interfaces, a three-parameter elastic foundation model
[2,30,31,32] was proposed by introducing the deflection of the
adhesive layer as an additional parameter. By assuming the linear
transverse normal stress variation and constant shear stress
through the thickness of the adhesive layer, a closed-form high-
order model for RC beams strengthened with FRP strips was also
proposed [3,10,17,18,35]. Although the peel stresses along differ-
ent adherend–adhesive interfaces were assumed to be different
in these models to satisfy the force equilibrium conditions which
are not met in the two-parameter model, the shear stress was still
assumed to be invariant through the thickness direction, which
contradicts with reality and makes the model incapable of captur-
ing the shear stress concentration in a small region near the edge of
the adhesive layer. In order to capture the functions of the shear
and peel stresses along the adherend–adhesive interfaces, the ana-
lytical models [14,13] were developed by assuming the linear lon-
gitudinal and transverse displacement along the thickness
direction. Even though different shear and peel stresses at the
two adherend–adhesive interfaces were obtained, the equilibrium
equations in the adhesive layer could not be satisfied. To better
predict the interface stress distributions along the adhesive joints,
the extensive effort has been devoted to the continuum analysis
based on the assumption of the linear variation of longitudinal
stress and the quadratic variation of the shear stress across the
adhesive thickness. Shen et al. [22] characterized the interface
stress as the trigonometric series, and the semi-analytical solution
was obtained using the principle of the complementary energy.
Yang et al. [33] extended this method to the adhesive joints sub-
jected to arbitrary loadings. However, in order to make the solu-
tions converged, thousands of trigonometric terms were required
and a large amount of computational effort was made, which is
thus inconvenient to be applied for design analysis of adhesive
joints. In most recent studies, two analytical solutions [34,4] were
developed by assuming the linear variation of longitudinal normal
stress and the quadratic variation of shear stress in the adhesive
layer. Based on the assumption of the linear variation of longitudi-
nal stress which is a logic error in fact, Zhao and Lu [34] obtained
the variation of longitudinal stress by using the equilibrium equa-
tions and Hooke’s law. Although Chen and Qiao [4] recently
obtained the shear and transverse normal stress distributions
through the thickness of the adhesive layer, the relationship
between the stress and deformation was not consistent and the
adhesive layer was modeled as a beam without considering the
Poisson’s effect. In addition, the bending moment of adhesive layer
was neglected by assuming the thickness of adhesive layer is thin
enough and its elastic modulus is relatively small.

In this study, an improved four-parameter model of adhesive
joints is proposed to study the stress distributions along the adher-
end–adhesive interfaces. The adhesive layer is modeled as a 2-D
elastic continuum in which both the Hooke’s law and equilibrium
equations are satisfied. The deformation of the adhesive layer is
obtained by using the constitutive equations instead of estimating
the deformation with the interface compliance or flexibility coeffi-
cient. The missing bending moment of the adhesive layer is also
retrieved, and all the force and moment boundary conditions are
satisfied, which mean that this model can be applied to the case
that the thickness of adhesive layer is in the same order or even
a few more times thicker than that of the strengthening materials
(e.g., the thin CFRP strengthening layer). To validate the present
model, the comparisons among the present model with the numer-
ical finite element analysis (FEA) are conducted. A parametric

study is finally conducted to reveal the influence of the Poisson’s
ratio which is commonly neglected in most of existing studies.

2. Four-parameter, elastic continuum model of an adhesive
joint

2.1. Adhesively-bonded layer-wise bi-layer beam system

Consider a beam system in which two adherends are bonded
through a thin or moderately-thick layer of adhesive. These two
adherends are modeled as the Timoshenko beams [26] with the
thickness of h1 and h2 and the width of b1 and b2, to account for
the shear deformation of the adherends, and they are bonded by
the adhesive layer of the width and thickness of b and ha, respec-
tively. A simple and generic adhesively-bonded beam system con-
figuration with the uniformly distributed load (UDL) and/or axial
force at the end is considered, though the model can be applied
to more complicated loading and boundary configurations.

The present interface stress analysis is based on the following
five assumptions: (1) Each individual layer is elastic, homoge-
neous, and orthotropic; (2) There is a deformation compatibility
condition between the layers, i.e., no slip or opening-up occurs at
the interfaces; (3) The adhesive is considered to be in a plane stress
state; (4) The longitudinal stresses are assumed to vary linearly
across the adhesive layer thickness [22]; and (5) The vertical defor-
mation of the middle plane of the adhesive layer (MA) is equal to
the average vertical deformation of the whole adhesive layer.

In this study, the analysis is focused on the bonded interface
area of the adherends. Consider a typical infinitesimal isolated
body of the adhesively bonded interface which is illustrated in
Fig. 1. For the shown free body diagram, the following equilibrium
equations are established:
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where Ni(x), Qi(x) and Mi(x) (i = 1, 2, a) are the internal axial forces,
transverse shear forces, and bending moments in the adherends and
adhesive layers, respectively; r1(x) and r2(x) are the peel stresses
along the top adherend–adhesive interface (commonly abbreviated
as TA) and the bottom adherend–adhesive interface (commonly
abbreviated as BA), respectively; s1(x) and s2(x) are the shear stres-
ses along the TA and BA interfaces, respectively. Note that the over-
all equilibrium conditions in the bi-layer beam region of the
structure under the uniformly distributed load (UDL) q shown in
Fig. 1 require that:

N1 þ N2 þ Na ¼ N10 þ N20 þ Na0 ¼ NT ð5Þ

Q1 þ Q2 þ Qa ¼ Q 10 þ Q20 þ Q a0 þ qx ¼ QT ð6Þ
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2
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2
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qx2 ¼ MT ð7Þ
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