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A higher order thin-walled beam model for the analysis of thin-walled structures considering the cross-
section warping and shear deformation is presented in this paper. The formulation is derived from the cor-
responding elasticity governing equations by adopting an approximation of the beam displacement field
over the cross-section by a set of linearly independent basis functions, which are refined according to the
accuracy required for the representation of the three-dimensional behaviour of the structure. A set of
beam-like equations is obtained through the integration over the cross-section of the corresponding elas-
ticity equations, properly weighted by the cross-section approximation functions. A set of uncoupled
beam deformation modes is obtained from a non-linear eigenvalue problem that stems directly from
the homogeneous solution of the beam differential equilibrium equations, being reduced to a generalized
eigenvalue problem for a transversely rigid cross-section. The criteria put forward for uncoupling the
beam deformation modes is mathematically consistent and allows the interpretation of the involved
structural phenomena. Two kinds of deformation modes are obtained: (i) classic deformation modes,
being associated with a null eigenvalue, requiring an adequate computation of a Jordan chain and (ii)
higher order modes corresponding to the non-null eigenvalues, allowing to measure the mode decay along
the beam axis. Some examples are presented in order to verify the capability of the model to simulate the
non classic effects associated with the higher order deformation modes of thin-walled structures.
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1. Introduction the cross-section higher order modes (i.e., effects with a

decaying behaviour). The higher order effects of a thin-

The analysis of thin-walled structures through a one-dimen-
sional model requires an enrichment of the displacement field
approximation on the beam cross-section in order to adequately
capture the three-dimensional behaviour of the structure. Hence,
and towards the effective use of a beam model in the analysis of
thin-walled structures, a set of deformation modes, defining non-
classic effects associated with the corresponding 3D structural
behaviour, has to be defined for the cross-section. The successful
development of a beam theory is therefore dependent on the def-
inition of such higher order modes. Several semi-analytical beam
formulations derived from the elasticity theory have successfully
dealt with the problem through different approaches:

(i) The quantification of the Saint-Venant principle, as defined
by Toupin [49] and Goetschel [20], provides a framework
for developing a beam theory since it allows to represent
the three-dimensional continuum mechanics in terms of
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walled beam model were obtained in Giavotto et al. [19],
Bauchau [2], Morandinia [32], Genoese [12], Ferradi [17,18]
and cast within the framework of a geometrically exact
beam theory in Genoese [14,15]. Higher modes of an aniso-
tropic beam were considered in Genoese [13].

(ii) The variational asymptotic method (VAM) developed by

Berdichevsky [4] considers the 3D elasticity problem decom-
posed into a one-dimensional formulation and a 2D problem
over the cross-sectional plane, allowing to retrieve classic
solutions and derive beam-like equations for higher order
effects, Cesnik [9], Hodges [23], Yu [52].

(iii) A beam formulation obtained by considering the definition

of the displacement field through Taylor expansions is
derived within the framework of a so-called unified formu-
lation (CUF), Carrera and Giunta [7], Carrera et al. [5], allow-
ing to improve the corresponding solutions towards a more
accurate representation of higher order effects due to its
hierarchical nature, Carrera and Petrolo [6], being applied
to beam models having a cross-section with an arbitrary
geometry, Carrera et al. [8].
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An efficient procedure adopted to capture the 3D structural
behaviour through a beam model corresponds to consider the
approximation of the displacement field on the cross-section by a
set of linearly independent basis functions. In general, the cross-
section is divided into elements over which the displacement field
is approximated, being a global approximation function (at a
cross-section level) obtained by ensuring compatibility between
elements. The three-dimensional elasticity problem is thus consid-
ered through a transverse analysis at the cross section level, being
the corresponding accuracy dependent on the approximation of
the displacement field over the cross-section.

For thin-walled structures, and since the cross-section behaviour
is often represented with reference to the corresponding middle
surface, 1D elements have been usually adopted for the discretiza-
tion of the cross-section, being the displacement field approximated
along the cross-section midline. Beam models based on a cross-sec-
tion discretization that considers warping functions of thin-walled
cross-sections were presented in Laudiero [29], Razagpur and Li
[41], Prokic [37], Razaqpur and Li [42], Proki¢ [38,39], Kim and
Kim [25], Proki¢ [40], Kim and Kim [26], Saadé et al. [44]. A new finite
beam model for the analysis of non-uniform torsion of beams that
considers the cross-section warping through an additional degree
of freedom and includes secondary torsional phenomena and shear
effects has been proposed in Murin [34]. An alternative procedure,
cast within the boundary element method, for the analysis of non-
uniform torsion of bars considering secondary warping was put for-
ward in Tsipiras [50], Sapountzakis et al. [45], Dikaros et al. [11].

A successful theory for the analysis of thin-walled structures
capable of considering the cross-section warping is the so-called
generalised beam theory (GBT). This theory has been developed
from the seminal work of Schardt [46] towards its applicability
to more generic cross-section midline geometries Moller [33],
Simado [48], Dinis et al. [10], Hanf [22], Ranzi [43], Piccardo [36]
and to variable cross-sections, Nedelcu [35]. However, in GBT for-
mulations the approximation of the displacement field is bound to
the cross section mechanical behaviour either by imposing unit
displacements at specific nodes whilst enforcing others displace-
ments to be null, and in compliance with deformation assump-
tions, or by imposing unit deformations at each wall while
keeping the deformations of other walls null; e.g., to consider the
out-of-plane displacements in closed cross-sections, the displace-
ment field approximations of Gongalves [16] considers the imposi-
tion of a unit displacement at independent “natural nodes” that
have to be properly selected so as to comply simultaneously with
(a) the null membrane shear hypothesis and (b) the compatibility
condition at a node where more than two walls converge. To
include shear deformation, an additional set of modes, “membrane
shear deformation modes”, is defined by imposing a unit shear dis-
tortion for each wall while enforcing (a) the axial displacements to
be null at independent “natural nodes” and (b) the Vlasov’s
assumption in all the remaining walls.

Beam models that consider the discretisation of the thin-walled
cross-section into two dimensional elements have also been suc-
cessfully considered in Yoon [54], Hegsberg [24], Yoon [55].

The enrichment through an approximation scheme for the dis-
placement field on the cross-section allows a beam model to repro-
duce the structural three-dimensional behaviour. However, for the
beam model to be efficiently adopted, an uncoupling of the corre-
sponding governing equations, which allows to identify uncoupled
structural phenomena through the corresponding deformation
mode, is a key feature. The uncoupling of the cross-section warping
derived by Vlasov [51] relatively to the classic modes is performed
by considering a change of the referential’s origin so as to cancel
coupled terms, corresponding to the definition of the cross-section
shear centre. However, for beam formulations that consider sets of

additional deformation modes, the criterion for uncoupling such
modes is not conveniently addressed. In fact, several innovative
and ingenious forms of obtaining uncoupled models by considering
some “ab initio” conditions together with orthogonalizations pro-
cedures that stem from eigenvalue statements. However, these
eigenvalues problems are not directly connected with the solution
of the beam governing equations, being instead aimed for the
simultaneous diagonalization between pairs of the coefficient
matrices of the corresponding governing equations, Sedlacek
[47], Maisel [30], Schardt [46] and Razaqpur and Li [41]. This pro-
cess has however the disadvantage of not being physically consis-
tent, failing to obtain a set of a linear combination of deformation
modes capable of reproducing the beam governing solutions;
moreover, the hierarchy of the displacement modes obtained is
not conveniently justified.

In general, the orthogonalization procedures are dependent on
specific cross-section mechanics, often justified through a metric
definition of the function’s space without an intimate connection
with a physical meaning. Yet, the definition of such criterion
should be uniquely defined and underpinned by a strong physical
concept from a structural behaviour perspective. Thus, seeking
such an uncoupling through successive generalised eigenvalue
problems it is not the conceptual idea to pursuit. The concept
should be instead to uncouple the solutions of the governing differ-
ential equations rather than the equation itself, which would allow
to obtain an hierarchical set of uncoupled solutions, having each
one of them a precise physical meaning.

Hence, the ability of the formulation to accurately represent the
thin-walled structural behaviour relies not only on the selection of
appropriate “enriched” approximation functions, but also, and
more importantly, on an uncoupling criterion conveniently justi-
fied that allows the definition of uncoupled deformation modes.

A higher order thin-walled beam model that assumes the cross-
section in-plane rigid but considers the out-of-plane warping and
the “membrane” shear deformation is presented in this paper. An
efficient procedure for obtaining warping modes is derived from
the linear eigenvalue problem associated with the solution of the
model’s governing equations, representing an alternative proce-
dure to the one presented by the authors in Vieira [53].

The approximation of the displacement field adopted in the for-
mulation of the higher order model considers an interpolation of
the displacement components by a set of linear independent func-
tions defined on the beam cross-section domain. As such, the def-
inition of the displacement field is independent from the cross-
section mechanical behaviour and hence it can be successfully
applied to any cross-section type, allowing to consider all cross-
section membrane deformation components.

The non-linear eigenvalue problem associated with the corre-
sponding beam governing equations is reduced to a generalised
eigenvalue problem for the in-plane rigid cross-section. The defor-
mation modes are obtained from the linear eigenvalue problem
and the conditions of orthogonality between modes associated
with distinct eigenvalues are derived. Deformation modes are
therefore uncoupled, allowing to separate the different thin-walled
structural behaviours. The procedure allows to obtain not only
classic deformation modes (without considering any ab initio
hypotheses), but also higher order warping modes. The shear
deformation of the middle surface stems directly from the model
formulation given the procedure adopted for the approximation
of the displacement field.

The model is applicable to cross-sections with a generic geom-
etry, e.g. open, closed and with more that two non-aligned walls
intersecting a cross-section node, since the displacement compo-
nents are approximated independently without considering
restrictions as a result of deformation hypotheses (see Fig. 1).
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