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a b s t r a c t

The experimental and numerical response of crane bridges is studied in this work. To this end, an
experimental campaign on a scale model of an overhead crane bridge was carried out on the shaking
table of CEA/Saclay in France. A special similarity law has been used which preserves the ratios of seismic
forces to friction forces and of seismic forces to gravity forces, without added masses. A numerical model,
composed of beam elements, which takes into account non-linear effects, especially impact and friction,
and simulates the earthquake response of the crane bridge, is presented. The comparison of experimental
and analytical results gives an overall satisfactory agreement. Finally, a simplified model of the crane
bridge, with only a few degrees of freedom is proposed.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The earthquake response of crane bridges is a very important
issue related to safety requirements for industrial facilities and,
especially, nuclear plants. Actually, a failure of a component of
the crane bridge or of its supports (e.g. supporting steel or concrete
runway beams) should be avoided. In addition to the consequences
on the handling capacity of the facility after the earthquake, a
major problem may occur if a part of or the whole crane bridge
falls on sensitive structures or equipment. Surprisingly, to the
authors’ knowledge, a very few experimental and analytical
research work in this field has been done in the past. The dynamics
of elastic continua with moving loads has been covered by Fryba
[1] and more recent work presents the approximate analytical
solutions [2–6] and finite element solutions [7,8] to similar prob-
lems. Regarding the earthquake response of these structures, not
many publications can be found in the literature. Komori et al.
[9] carried out seismic tests under horizontal excitation whereas
Otani et al. [10] focused on the vertical earthquake response of a
1/8 scale model. Schukin and Vayandrakh [11] studied the
earthquake behavior of a polar crane bridge by means of a compre-
hensive finite element model. Betbeder et al. [12] and Betbeder and
Labbé [13] deal with simplified models accounting for the
reduction of the crane bridge forces due to sliding. Sarh et al.

[14] analyzed the behavior of a simplified scale model of a crane
bridge subjected to random unidirectional excitation and com-
pared it with experimental tests. More recently, Kenichi et al.
[15] carried out a shake table experimental campaign on a model
of a crane bridge focusing on the uplift response of the trolley.

To have a further insight into the earthquake response of crane
bridges an experimental campaign of a 1/5 scale model was carried
out on one of the shake tables of the Commissariat à l’Énergie Ato-
mique et aux Énergies Alternatives (CEA) in Saclay, France. In the
following we describe the most important features of the model,
the experimental set-up and we present the main experimental
results. Moreover, we discuss some subtle points related to the
numerical modeling of the mock-up and we compare the analytical
and experimental results.

2. Experimental tests

The mock-up is a simplified 1/5 scale model of a 22.5 m long
overhead crane bridge. Given that the shake table is a 6 m � 6 m
table, this scale is the biggest scale that could have been consid-
ered. The total mass of the unloaded prototype is of about 100 t.
The bridge steel girders that support the crane trolley have a rect-
angular hollow section 1050 mm � 2100 mm. The width of the
section flanges and vertical walls are 21 mm and 12 mm respec-
tively. The runway beams are continuous I type steel beams with
a typical span of 10 m. The height of the section is 1500 mm, the
flanges width and thickness are 600 mm and 35 mm respectively
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and the web thickness is 12 mm. One important issue for the
design of the model was the determination of the similarity law
which is presented in the following subsection.

2.1. Similarity law

Due to the limitations in the capacities of the experimental
facilities, experimental models are, usually, reduced scale models.
To be representative of the behavior of the response of the real
structure (prototype), tests on reduced scale models should be car-
ried out following similarity laws. A natural way to do this is
through dimensional analysis [16–19]. Let us look at a quantity
of interest, for instance, the vector of relative displacement with
respect to the shake table displacement at any point of the bridge,
at coordinate x, d(x). Assuming a homogeneous, isotropic, rate
independent material and a Coulomb dry friction for the sliding
interfaces, this quantity may be written as a function of the sys-
tem’s parameters:

d ¼ /d E; m;l; x; t;q; g;C; L; . . . ;ry; . . . Li . . .
� �

ð1Þ

where E is the Young modulus, m is the coefficient of Poisson, l is
the friction coefficient, t denotes time, q is the mass density, C is
the vector of shake table acceleration, L is a characteristic length
of the structure (e.g. length of the bridge girders). For the sake of
conciseness we limit ourselves only to the above ten variables
(d, E, m, l, x, t, q, g, C, L). However, one must keep in mind that sev-
eral other variables (e.g. nonlinear material properties, other geo-
metrical dimensions like the girders’ section dimensions, wheel
dimensions, etc.), play a role in the system’s response. All these
are schematically denoted, in the ‘‘dot’’ part into the brackets in
Eq. (1) as, for instance, the yield stress ry and other geometrical
dimensions Li. In the present case, the rank of the matrix of the
dimensions’ exponents of the variables governing the system’s
response is equal to 3 (i.e. equal to the number of fundamental
dimensions: mass, time and length). According to the Vachy–Buck-
ingham’s Pi theorem, Eq. (1) can be written in dimensionless form
with N � 3 dimensionless variables, N being the number of the ini-
tial variables.
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A similar relation holds if the quantity of interest is the dimension-
less stress r=E instead of the dimensionless displacement. The
products P1 = qLC/E and P2 = E/qLg may be seen as the ratios of
seismic excitation forces to elastic forces and of elastic forces to
gravity forces respectively. The latter is the Froude number. The
dimensionless time P3 ¼ t

ffiffiffiffiffiffiffiffiffi
E=q

p
=L is the ratio of time to the time

needed by sound waves to travel over the length L. P4 = C/(lg)
accounts for the ratio of the seismic excitation forces to the friction
forces.

A complete similitude is achieved if all dimensionless variables
have the same values for both the model and the prototype. In the
framework of seismic tests of structures two similarity laws are
widely used: velocity similarity and, even more frequently, Froude
or gravity similarity. Consider a uniform geometrical scaling, that
is, the coordinates of the model and of the prototype (scale 1 struc-
ture) satisfy the relation x ¼ kx0, where k denotes the scaling factor
(1/5 in this case) and subscript 0 denotes, throughout this paper,
quantities referred to the prototype. According to the velocity sim-
ilarity law, all dimensionless products in Eq. (2) are the same for
the model and the prototype, except the Froude number P2. If
the same material (E, m, q) is used for both the prototype and the
model, the above similarity implies that the time scaling is
t=t0 ¼ k and the ratios of mass, M, stiffness, K and eigenfrequencies,
f, of the model to those of the prototype are:

M=M0 ¼ k3; K=K0 ¼ k; f=f 0 ¼ 1=k ð3Þ

P3 and P1 similitude imply that the time scaling is t=t0 ¼ k and that
the excitation (table) acceleration components, C, must be ampli-
fied by the reciprocal of the scaling factor i.e. CðtÞ=C0ðt0Þ ¼ 1=k.
The resulting displacement, velocity and acceleration components,
respectively d, v and a, vary as:

dðtÞ=d0ðt0Þ ¼ k; vðtÞ=v0ðt0Þ ¼ 1; aðtÞ=a0ðt0Þ ¼ 1=k ð4Þ

This law is called velocity similarity because there is no velocity
scaling. It is well known that the main drawback of this similarity
law is that, since the Froude number similitude is not satisfied,
the ratio between dynamic and static stresses of the model is not
the same as in the prototype. Moreover, in the present case,
where the importance of friction phenomena is crucial, if the same
coefficient of friction l, is used for both the prototype and the
model, it is not possible to respect P4 similarity. Therefore, similar-
ity of the friction forces with respect to the seismic excitation forces
cannot be achieved unless specific interface materials are used with
a friction coefficient 1=k times the friction coefficient of the proto-
type. Given that steel to steel friction coefficient is of about 0.20 this
would imply a model friction coefficient of about 1 which is hardly
feasible if not impossible.

The most frequently used similarity law, in experimental earth-
quake engineering, is the gravity or Froude similarity. In this case,
all the dimensionless variables in Eq. (2), including the Froude
number, are the same for the model and the prototype. This results
in the following similarity relations:

q=q0 ¼ 1=k; K=K0 ¼ k; f=f 0 ¼ 1=
ffiffiffi
k
p

; t=t0 ¼
ffiffiffi
k
p

;

C=C0 ¼ 1; d=d0 ¼ k; v=v0 ¼ 1=
ffiffiffi
k
p

; a=a0 ¼ 1
ð5Þ

This similitude law respects similarity of the ratios of friction and
gravity forces to seismic excitation forces. However, the necessary
condition to meet this requirement is that the mass density q,
should be changed leading to M=M0 ¼ k2 instead of M=M0 ¼ k3. In
many cases, for instance buildings’ models, this is achieved, in
practice, by adding additional masses on the slabs of the mock-
up. However, adding masses, all over the crane bridge beams, would
be not only practically complicated, but it would, also, have a con-
siderable impact on the stiffness of the crane bridge. Actually, since
k ¼ 1=5, the added masses should be four times the mass of the
bridge itself. It is obvious that such rigid heavy blocks, put one next
to the other to increase the mass of the beams, would have,

Fig. 1. Model of the crane bridge mounted on the shake table.
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