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a  b  s  t  r  a  c  t

Homer  Kissinger  invented  the  peak  displacement  kinetic  method  that  bears  his  name  in the mid-1950s
when  he was  an  intern  at the  National  Bureau  of  Standards.  Because  the  method  is  rapid,  easy-to-use,
reliable,  and  uses  readily  available  differential  scanning  calorimetry  instrumentation,  it is  one  of the  most
commonly  used  kinetic  tools,  having  more  than  2000  literature  citations.  The  development  of  the  method,
Kissinger’s  scientific  biography,  advances  to  the  approach,  and  practical  experimental  applications  are
reviewed.

© 2012 Elsevier B.V. All rights reserved.
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1. Introduction

During one of the meetings of the International Conference
on Thermal Analysis and Calorimetry (ICTAC), the British thermal
analyst Trevor Lever commented in characteristically dry British
humor, “I love the ICTAC Conference. I get to put a face with
an equation.” I enjoyed a good laugh at the remark but it led
me to thinking about the eponymous techniques that we use in
thermal analysis and how they were developed. I also wondered
where the authors had moved in their on-going careers. Joe Flynn
and Takeo Ozawa, authors of the Ozawa–Flynn–Wall [1,2] kinetic
method, and Jaroslav Sestak, author of the Sestak–Berggren method
[3], regularly attend international thermal analysis meetings. But
what about Hans Borchardt and Homer Kissinger, authors of the
Borchardt–Daniels [4] and Kissinger [5] kinetic methods? I began

∗ Corresponding author. Tel.: +1 302 559 6827.
E-mail addresses: roger.l.blaine@gmail.com (R.L. Blaine), hojak@frontier.com

(H.E. Kissinger).

a low-level quest to locate some of these scientists. Much to my
surprise, through the Internet, I uncovered Homer Kissinger in
retirement in Richland, Washington, where he had lived for nearly
six decades. Correspondence was  initiated through email and here
is his story.

2. The Kissinger method

The Kissinger method is one of the most popular approaches for
determining kinetic parameters by thermal analysis. The Kissinger
peak displacement approach is easily applied with commonly avail-
able differential scanning calorimeters, is applicable to very small
specimen sizes, and quickly and easily yields the kinetic parameters
(E and Z) associated with testing for lifetime, safety, and transporta-
tion purposes [6].  Sanchez-Jimenez et al. report more than 2000
citations of the Kissinger method in the literature [7],  most of them
dealing with its application.

The Kissinger method is based upon a series of experiments
in which small milligram quantities of the reacting material are
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Fig. 1. Cato Guldberg (on the left) and Peter Waage.

heated at several heating rates (ˇ) while the reaction exothermic
peak is recorded. The exothermic peak temperature (Tm), taken to
be a point of constant conversion, is measured at each heating rate.
A display is prepared of ln[ˇ/T2

m] versus 1/Tm and a straight line
is fitted to the data. The slope of the line equals −E/R whereas
the intercept yields ln[ZR/E] where E is the activation energy, Z
is the Arrhenius pre-exponential factor and R is the gas constant
(=8.314 J/mol K). A first order reaction (n = 1) reaction order is usu-
ally assumed.

3. The Kissinger equation

Cato Guldberg and his brother-in-law Peter Waage (see Fig. 1),
first advanced the law of massenwirkung (mass action) in Norwe-
gian in 1864 [8,9]. The law of mass action describes the chemical
reaction equilibrium. It became more well-known some 15 years
later when it was published in German, the language of science
and technology [10] after publications in Dutch and French. In
this much-expanded article under the original title, the concept
is advanced that the rate of a reaction is described by a rate con-
stant and is proportional to concentration of the stoichiometric
reactants. Today this concept is known as the rate equation and,
when applied to solid state reactions, is written in the form that
the rate of reaction (d˛/dt) is proportional to some function of the
amount of reactant (f(˛))

d˛

dt
= k(T)f (˛) (1)

where  ̨ is the fraction of reactant remaining, t is the time, k(T) is
the proportionality factor known as the rate constant at absolute
temperature T, and f(˛) is the “some-function-of ˛.” The particular
form or function of f(˛) used is known as the “kinetic model.”

The power of kinetic parameters lies in its ability to predict per-
formance under difficultly reached time or temperature conditions,
such as in the estimation of lifetimes. Chief among these abilities is
how the reaction rate varies with temperature. A number of equa-
tions may  be to describe reaction rate changes with temperature
[11] but one of the earliest and most commonly used relationships
was advanced by Svante Arrhenius (see Fig. 2) in 1889 and is known
as the Arrhenius equation [12]:

k(T) = Z exp
[−E

RT

]
(2)

The reaction rate equation and the Arrhenius equation are com-
monly combined into the general rate equation:

d˛

dt
= Z f (˛) exp

[−E

RT

]
(3)

Fig. 2. Svante Arrhenius.

If the general rate equation is differentiated by parts, one gets

d[d˛/dt]
dt

= Z exp
[−E

RT

]
d[f (˛)]

dt
+ Z f (˛)

d[exp[−E/RT]]
dt

(4)

where  ̌ is identified as the constant heating rate dT/dt and
d[exp[−E/RT]]/dt = Eˇ/RT2 exp[−E/RT]. At the maximum of the reac-
tion exothermic peak, T = Tm, d[d˛/dt]/dt = 0, and Eq. (4) becomes

0 = d[f (˛)]
dt

+ f (˛)
Eˇ

RT2
m

. (5)

Given the identity f′(˛) = d[f(˛)]/d  ̨ then d[f(˛)]/dt = f′d˛/dt. Substi-
tuting this into Eq. (5) yields

0 = Z exp
[ −E

RTm

]
f ′(˛) + Eˇ

RT2
m

. (6)

Solving for ˇ/T2
m and taking the natural logarithm, yields:

ln

[
ˇ

T2
m

]
= ln

[
ZR

E

]
+ ln[−f ′(˛)] − E

RTm
. (7)

If the reaction is assumed to be first-order (n = 1) then f′(˛) = (1 − ˛),
f′ = −1, ln[−f′(˛)] = 0 and Eq. (7) simplifies to

ln

[
ˇ

T2
m

]
= ln

[
ZR

E

]
− E

RTm
(8)

The latter is the familiar Kissinger equation.

4. Extension to other kinetic models

This clean equation form is based upon the assumption of a first-
order reaction so that the term ln[−f′(˛)] in Eq. (7) is zero. A number
of authors have extended the Kissinger method to kinetic models
other than first order. For example, John Elder in his two papers (the
second paper pointing out errors in the first) extended the Kissinger
equation to additional nth order reactions [13,14].  A more impor-
tant extension is that of Augis and Bennett [15] and the follow-on
article by Boswell [16] that modified the original Kissinger method
for the Avrami model to be applicable to autocatalytic reactions
such as thermoset cure and crystallization.

The peak displacement method has been extended to other ther-
mal  analytical techniques through selecting an appropriate point of
constant conversion on the thermal curve. In thermogravimetry, a
point of constant conversion may be identified at a given conver-
sion or it may be taken as the peak of the derivative of the mass loss
profile.
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