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a b s t r a c t

This paper deals with the evaluation of the response probability density function (pdf) and/or character-
istic function (cf) of linear systems subject to stochastic loads. It proposes a new method based on the
new version of Probabilistic Transformation Method (PTM). An important aspect of the proposed
approach is the ability to join directly the pdf of the input load with that of the response. Working in term
of pdfs and/or cfs, the stochastic properties of the response process are full described. This enables to take
into account the non Gaussianity and non stationarity of the process. Based on the step-by-step integra-
tion method, explicit solutions will be proposed for the random response of systems driven by loads sto-
chastically defined by their cf or loads defined by a quadratic relation of a Gaussian process.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The characterization of the random response of a structural
time-dependent system often requires a high computational effort,
which in turns depends on the type of random loads. If the load is
modelled as a stationary Gaussian random process, the quantities
of interest able to describe the random properties of the response
are the correlations and the cross-correlations, in the time domain,
and the power spectral densities, in the frequency domain. In the
case of stationary loads, the analysis procedures are largely
reported in the literature [1–3]. The case of non-stationary excita-
tions is more complicated, and some efforts have been made by
several authors to propose effective methods [4–11]. Moreover,
the effort increases if the load is non Gaussian because the second
order correlations and the cross-correlations of the response are
not sufficient to describe the random properties. In this case, the
full probabilistic characterization of the random response is given
by the knowledge of its probability density function (pdf), or by its
characteristic function (cf). Unfortunately there are not exact
solutions, except in some simple cases, such as for linear systems
subject to Gaussian inputs.

The literature shows several methods that allow reconstructing
the pdf response by using the moments (or cumulants) series
method, with a relatively low computational effort [12–16]. The
validity of these approaches is largely confirmed; however they
lack a direct nature, namely the ability to join directly the pdf of
the input with that of the output. Also, in the case of strongly

non Gaussian processes, a very high number of moments/
cumulants is necessary and the convergence of these methods is
not guaranteed; and, at last, a very high computational effort is
usually related to them. Monte Carlo methods [17,18] exhibit the
well known problem that the accuracy of the estimates depends
on the sampling size of the stochastic processes, besides of the
number of samples, increasing the related computational effort.
Even these methods, moreover, do not define a direct input–output
relationship in terms of pdf. Nevertheless, advances of probability
density evolution method have been obtained, based on the
principle of preservation of probability [19,20]. The key point of
this approach is that the probability density evolution of response
of structural systems relies upon their physical mechanism.

Aim of this paper is showing a method, based on the Probabilis-
tic Transformation Method (PTM) [21–26], to obtain the pdf
response of linear dynamic systems subjected to non-stationary
and non-Gaussian input processes. This approach enables to eval-
uate the response pdf and/or cf once that the input pdf and/or cf
is known. This allows considering both the non-stationarity and
non-Gaussianity of the process directly by assigning the input
pdf/cf law. This method makes to obtain the pdf response with a
very low computational effort. Besides, some explicit relationships
are proposed for the response cf.

2. Preliminary concepts

The differential equation governing the dynamic behaviour of a
multi-degrees-of-freedom linear system is usually written as
follows:
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M u
0
ðtÞ þ C _uðtÞ þ KuðtÞ ¼ AfðtÞ ð1Þ

where M, C and K are the system mass, damping and stiffness n � n
matrices, respectively; u(t) is the n-vector that collects the degrees
of freedom; A is a n �m matrix of coefficients and f(t) is the m-vec-
tor of the external loads. In the state variable space, the equation of
motion is rewritten in the following form:

_xðtÞ ¼ DxðtÞ þ vfðtÞ ð2Þ

where

xðtÞ ¼
uðtÞ
_uðtÞ

� �
; D ¼

0 I
�M�1K �M�1C

� �
; v ¼

0
M�1A

� �
ð3a-cÞ

The vector x(t), which collects the response state variables, can
be evaluated by the Duhamel’s integral, that is:

xðtÞ ¼ HðtÞx0 þ
Z t

0
Hðt � sÞvfðsÞds ð4Þ

where x0 is the vector collecting the initial conditions at t = 0; H(t)
is the fundamental matrix related to the differential equation of
motion, that can be defined in the following way:

HðtÞ ¼ expðDtÞ ð5Þ

The response system x(t) can be evaluated numerically by sev-
eral methods; among these, the step-by step integration method
[2,27] based on the fundamental matrix, will be used in this work.
This method enables us to solve in closed form, in a generic step Dt,
the convolution integral given into Eq. (4) once that a polynomial
interpolation law is assumed for the vector load f(t) in correspon-
dence of the same time step Dt. As an example, assuming for f(t) a
linear interpolation law within the interval [tk�1, tk], one obtains
the following step-by-step numerical procedure:

xðtkÞ ¼ xðkDtÞ ¼ HðDtÞxðtk�1Þ þ C0ðDtÞfðtk�1Þ þ C1ðDtÞfðtkÞ ð6Þ

x(tk) being the system response at the time tk = kDt; analogously
f(tk) is the vector load evaluated at the same time. The operators
C0(Dt) and C1(Dt) are given by the following relationships:

C1ðDtÞ¼ LðDtÞ
Dt
� I

� �
D�1v; C0ðDtÞ¼ HðDtÞ�LðDtÞ

Dt

� �
D�1v;

LðDtÞ¼ ½HðDtÞ� I�D�1
ð7a-cÞ

Without losing the generality of the approach, deterministic
zero initial conditions are considered. Appling recursively the
step-by-step procedure given above in Eq. (6), it s possible to
define the relationship between the response system at the time
tk and all the vectors load f(ti), i = 0,1, . . . , k, that is:

xðtkÞ ¼ xðkDtÞ
¼ Hk�1ðDtÞC0ðDtÞfðt0Þ

þ
Xk�1

i¼1

Hk�iðDtÞC1ðDtÞ þHk�i�1ðDtÞC0ðDtÞ
h i

fðtiÞ þ C1ðDtÞfðtkÞ

ð8Þ

This equation can be rewritten in compact form as follow:

xðtkÞ ¼ RðkÞfðkÞ;

RðkÞ ¼ rðkÞ0 ; rðkÞ1 ; . . . :; rðkÞk

h i
; fðkÞ ¼ fTðt0Þ; fTðt1Þ; . . . :; fTðtkÞ

h iT ð9a-cÞ

where

rðkÞi ¼ Hk�iðDtÞC1ðDtÞ þHk�i�1ðDtÞC0ðDtÞ ¼ Hrðk�1Þ
i ;

with i ¼ 1;2; . . . ; k� 1

rðkÞ0 ¼ Hk�1ðDtÞC0ðDtÞ ¼ Hrðk�1Þ
0 ; rðkÞk ¼ C1ðDtÞ

ð10a-cÞ

Eq. (9a) provides the dynamic response at the time tk explicitly
respect to the random load f(t), which is sampled, and all the sam-
ples are collected in the vector f(k). By this procedure, the dynamic
problem can be addressed like a static one. All the vectors load f(ti),
with i = 0, 1, . . . , k, appearing in Eq. (9c), can be considered as sam-
ples of the stochastic process f(t) extracted at the sampling step
tj = jDt; correspondently, the response vector x(tk) is the sample
response of the stochastic process x(t) at the time tk. In order to
characterize probabilistically the stochastic process x(t), one could
characterize the sample response x(tk): this is what made in this
work and, as it will be shown later, the fundamental approach to
obtain this result is the PTM, whose basic concepts are shown in
next section.

3. Basic concept of the PTM

The PTM [21–26,28–31] is based on some relationships that
enable to join the joint probability density functions (jpdfs) of
two random vectors connected by a deterministic law. However,
in this work it will focus only on the integral relationship showed
below. Let’s consider a n-dimensional random vector x and a m-
dimensional application h(�) such that:

x ¼ hðfÞ ð11Þ

x being a random vector, as well as f. It can be shown that the jpdfs
of x and f, that are px(x) and pf(f), are related by the following rela-
tionship [21–26]:

pxðxÞ ¼
Z þ1

�1

Z þ1

�1
::ðmÞ::

Z þ1

�1
pfðyÞdðx� hðyÞÞdy ð12Þ

d(x � h(y)) being the m-dimensional Dirac Delta centred in the
coordinate vector h(y), that is:

dðx� hðyÞÞ ¼ dðx1 � h1ðyÞÞdðx2 � h2ðyÞÞ . . . dðxm � hmðyÞÞ ð13Þ

where hj(�) (with j = 1, 2 . . . , m) is the jth element of the m-dimen-
sional application h(�).

Eq. (12) provides a direct relation between the jpdfs of the
random vectors x and f by a multidimensional integral. From
Eq. (12) it is possible to obtain the integral relationship of every
marginal pdf pxj

ðxjÞ by integrating respect to all the other variables
and taking into account the properties of the Dirac Delta function.
For example, the marginal pdfs and the joint second order pdfs
have the following integral form:

pxj
ðxjÞ¼

Z þ1

�1

Z þ1

�1
::ðmÞ::

Z þ1

�1
pfðyÞdðxj�hjðyÞÞdy

pxjxp
ðxj;xpÞ¼

Z þ1

�1

Z þ1

�1
::ðmÞ::

Z þ1

�1
pfðyÞdðxj�hjðyÞÞdðxp�hpðyÞÞdy

ð14a;bÞ

From Eq. (14) it is possible to obtain the integral relationships of
the characteristic functions; by applying the Fourier transform to
both sides of Eq. (14) one obtains:

Mxj
ðxÞ¼ 1

2p

Z þ1

�1
pxj
ðxjÞexpð�ixxjÞdxj

¼ 1
2p

Z þ1

�1

Z þ1

�1
::ðmÞ::

Z þ1

�1
pfðyÞexpð�ixhjðyÞÞdy

Mxjxp ðxj;xpÞ¼
1

ð2pÞ2
Z þ1

�1

Z þ1

�1
pxjxk
ðxj;xpÞexpð�ixjxj� ixpxpÞdxjdxp

¼ 1

ð2pÞ2
Z þ1

�1

Z þ1

�1
::ðmÞ::

Z þ1

�1
pfðyÞexpð�ixjhjðyÞ� ixphpðyÞÞdy

ð15a;bÞ

Eqs. (14)–(15) are the reference relationships of the new version of
the PTM proposed in [21–26] for systems driven by static loads. In
particular, Eq. (15) is the reference relationship of this work. Now,
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