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a b s t r a c t

This paper considers a nonlinear single-mass two-frequency pendulum tuned mass damper (TMD) to
reduce horizontal vibration. The proposed TMD contains one mass moving along a bar while the bar
can rotate around the fulcrum point attached with the controlled structure. Under a horizontal excitation,
the single TMD mass has two motions (swing and translation) at the same time and the proposed TMD
has two natural frequencies. In comparison with the optimal linear single mass TMD, because of the
inherent nonlinearity of the proposed TMD, it has good performance for large vibration. Moreover, the
proposed TMD is also less sensitive to the parameter mistuning. The problem is expressed in the non-
dimensional equation form. The approximated vibration amplitudes can be obtained by solving a scalar
algebraic equation. The numerical simulation is carried out to verify the approximate analysis.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

A TMD, which consists of a moving mass attached to the main
structure through springs and dampers, is a well-known device
to suppress vibration. The classical linear single mass TMD is sim-
ple but still has some limitations such as the narrow band of sup-
pression frequency and the sensitivity problems due to mistuning.
There are a lot of efforts to improve the linear single mass TMD by
considering multiple TMD, nonlinear TMD or by adding control. In
[1–6] and references herein, one can find several methods to opti-
mize the multiple TMD. The multiple TMD is proved to be more
effective and less sensitive to mistuning than the single TMD. Add-
ing control to the TMD leads to the concepts of active TMD, hybrid
TMD or semi-active TMD. The readers can find some good over-
views of active and semi-active controlled systems in [7,8]. Other
studies consider the nonlinear TMD [9–13]. The nonlinearity can
be added by the cubic spring or by the impact. Pendulum behavior
is another source of nonlinearity. In fact, as the natural frequency
of a pendulum depends only on its length, it is easier to tune
pendulum TMD frequency in practical applications. The three-
dimensional motions of the pendulum TMD has been studied in
[14–16]. Some other types of pendulum TMD were presented in
[17–19]. The nonlinearity of the pendulum also reveals a new type
of TMD called Coriolis TMD or Coriolis vibration absorber [20].

In a structure vibrating in one direction, a linear single mass
TMD attached to this structure has only one degree of freedom
(DOF) and one natural frequency. Increasing the number of DOF
of the TMD can improve its performance. An evident approach is
to use the multiple TMD. There are a lot of publications on the mul-
tiple TMD. However, because the TMD mass has to be divided into
many smaller ones, practical applications of multiple TMD
approach still have some limitations. Some other efforts construct
multi-DOF single mass TMD [21,22].

In this paper, we use the nonlinearity of the pendulum to
increase the number of DOF of the TMD. This paper has two novel-
ties. First, it introduces the two-DOF pendulum TMD and shows
the natures of two TMD natural frequencies. Second, the paper pre-
sents an approximated solution of the system’s vibration by solv-
ing a scalar algebraic equation. The approximated solution agrees
with the accurate solution while is quite convenient for the TMD
optimization. The effective and the insensitivity to mistuning of
the proposed TMD, the accuracy of the approximated solution
are verified by numerical simulation.

2. Problem statement

The concept of a single-mass two-frequency pendulum TMD is
shown in Fig. 1.

When the main mass moves horizontally, the TMD mass has
swing motion and translation motion simultaneously. The vibra-
tion of the main mass therefore can be transferred more to the
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TMD mass. The swing motion of the TMD mass directly reduces the
horizontal vibration of the main mass. The translation motion of
the TMD mass acts on the main mass in the indirect way. The
translation motion produces the Coriolis force acting on the pendu-
lum while the pendulum swing acts on the main mass. The

proposed TMD can have potential applications in vibration control
of structures induced by horizontal loads such as seismic, wind or
wave loads. Other vibrations can also be controlled by this TMD if
there are some mechanisms to convert general vibrations to hori-
zontal vibration.

To write the motion equations, the symbols are shown in Fig. 2
and are summarized in Table 1.

Consider the coordinate system in Fig. 2 and denote the
horizontal position of the main mass as x, the position of the
damper mass (xd, yd) is obtained as

xd ¼ xþ ðl� uÞ sin h; yd ¼ ðl� uÞ cos h ð1Þ

The kinetic energy T, the potential energy V, and the energy
dissipation function F are

T ¼ m _x2

2
þmdð _x2

d þ _y2
dÞ

2
; V ¼ kx2

2
þ kdu2

2
þmdgðl� u� ydÞ;

F ¼ cd _u2

2
þ ch

_h2

2
ð2Þ

The system has 3 degrees of freedom: x, h and u. The Lagrange
equations are given by

d
dt

@ðT�VÞ
@ _x

� �
� @ðT�VÞ

@x þ @F
@ _x ¼ f 0 cosðxt �uÞ

d
dt
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@h þ @F
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dt

@ðT�VÞ
@ _u

� �
� @ðT�VÞ

@u þ @F
@ _u ¼ 0

8>>>><
>>>>:
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Using (1), (2) in (3) gives

ðmþmdÞ€xþkx�mdð€usinhþ2 _u _hcosh�ðl�uÞ€hcoshþðl�uÞ _h2 sinhÞ
¼ f 0 cosðxt�uÞ

mdðl�uÞð�2 _u _hþðl�uÞ€hþ€xcoshþg sinhÞþch
_h¼0

mdð€u�€xsinhþðl�uÞ _h2�gð1�coshÞÞþkduþcd _u¼0 ð4Þ

To write the equations in non-dimensional form, some parameters
are introduced in Table 2.

The motion Eq. (4) are simplified and rearranged as following
non-dimensional form:

ð1þ lÞ€z1 þ z1 � lð€z2 sin hþ 2 _z2
_h cos h� ð1� z2Þ€h cos h

þ ð1� z2Þ _h2 sin hÞ ¼ f n cosðbs�uÞ
ð1� z2Þð�2 _z2

_hþ ð1� z2Þ€hþ €z1 cos hþ a2
1 sin hÞ þ 2f1

_h ¼ 0

€z2 � €z1 sin hþ ð1� z2Þ _h2 � a2
1ð1� cos hÞ þ a2

2z2 þ 2f2 _z2 ¼ 0 ð5Þ

in which the dot operator from now denotes the differentiation
with respect to normalized time s. The full nonlinear Eq. (5) are
used in the numerical calculations in Section 4. Before moving fur-
ther, some general characteristics of the proposed TMD can be
drawn from (5). To the first order, Eq. (5) can be written as:

x

y

k
m

md

cd

kd

c
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f0cos( - )

Fig. 2. Symbol used in system modeling.

Table 1
Description of symbols in Fig. 2.

Symbol Description

k, m Spring constant and mass of main structure
kd, md Spring constant and mass of TMD
cd, ch Damping coefficients in rotation and translation directions
h, u Rotation angle and translation displacement
l Distances between the fulcrum and the damper mass in the static

condition
f0, x, u Amplitude, frequency and phase of excitation

Main mass

Damper
mass

Swing motion

Translation
motion

Fig. 1. Concept of single-mass two-frequency pendulum TMD.

Table 2
Symbols used to write the non-dimensional equations.

Symbol Description

xs ¼
ffiffiffi
k
m

q
Natural frequency of the main structure

s = xst Non-dimensional time with time scale xs
�1

l ¼ md
m

Mass ratio of TMD

a1 ¼
ffiffiffiffiffi
g=l
p
xs

;a2 ¼
ffiffiffiffiffiffiffiffiffiffi
kd=md

p
xs

Natural frequency ratios in two directions of TMD

f1 ¼ ch

2l2 mdxs
; f2 ¼ cd

2mdxs
Damping ratios in two directions of TMD

z1 ¼ x
l ; z2 ¼ u

l Non-dimensional forms of the displacements

f n ¼
f 0
kl ;b ¼

x
xs

Non-dimensional forms of excitation amplitude and
excitation frequency
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