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a b s t r a c t

This paper presents a continuation algorithm based on the Asymptotic Numerical Method (ANM) to study
instability phenomena of large torsion of thin-walled open sections beams under various external load-
ings. The proposed algorithm connects perturbation techniques with a discretization principle and a con-
tinuation method without the use of a correction process. In the model, the equilibrium and material
constitutive equations are established without any assumption on torsion angle amplitude. In presence
of eccentric loads and large torsion context, the right hand side of the equilibrium equations is highly
nonlinear and contributes to the tangent stiffness matrix. A 3D beam element having two nodes with
seven degrees of freedom is considered in mesh process. Several numerical examples from buckling of
thin-walled open sections beams are analyzed to assess the efficiency and the reliability of the method.
Comparisons are made with known commercial software. The proposed ANM algorithm is more reliable
and less time consuming than other iterative classical methods.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The structural strength and stability of the majority of laterally
unrestrained prismatic or tapered beams are governed by lateral-
torsional buckling behavior. In literature, closed-form solutions
for the buckling of thin-walled members date back to the end nine-
teenth century [1–4]. They are detailed in standard books [5–8].
These models developed for small non-uniform torsion has been
commonly adopted in most theoretical and finite element works
on thin-walled elements with open sections [9–12]. In these stud-
ies, the stability analysis of such structures is limited to the deter-
mination of buckling loads of perfect structures carried out from
solution of the classical eignevalue problem and recourse to design
rules is preferred for design necessity. Effects of load height appli-
cation, Wagner coefficients and boundary conditions on the stabil-
ity are studied extensively in [13–15]. Application of the boundary
element method in behavior and stability of thin-walled structures
is investigated in Dourakopoulos [16]. Numerical methods for cross
sections characteristics are investigated in [17–20]. Currently,
these structures often work in the nonlinear range. Then, a

nonlinear analysis is necessary for taking into account large dis-
placements and inherent coupling equations. The nonlinear behav-
ior of thin-walled is more complex than the linear models
investigated according to Vlasov’s model: (1) the torsion behavior
is predominated by the shortening effect proportional to cubic
terms of the twist angle, (2) the beam stability is highly dependent
on pre-buckling deflection related to the ratio of bending strengths
about cross section axes, (3) 3D successive rotations do not com-
mutate and more attention is then demanded and (4) the solution
is highly dependent on imperfections and solution control. Kim
et al. [21] investigated a finite element formulation with consider-
ation of semi-tangential moments and rotations. Kwak et al. [22]
formulat ed a finite element analysis to account for warping effect
on the nonlinear behavior of open section beams, by using the
Total Lagrangian formulation. Turkalj et al. [23,24] have introduced
a correction in the rotation matrix by considering higher order
terms for elastic and inelastic behavior. Nonlinear behavior of
thin-walled beams with arbitrary cross sections in plasticity and
dynamics are studied in [25,26]. Effects of pre-buckling deflection
on beam stability are available in [27–32].

Many finite elements models have been proposed for the
stability and nonlinear behavior of thin-walled beams with open
constant and variable sections in large rotations [33–36].
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The assumption of finite torsion and trigonometric functions are
approximated by cubic polynomial functions of the twist angle
adopted in these models. These models have been successfully
applied for buckling and lateral buckling analysis of thin-walled
beams with open sections and improved solutions have been
obtained by these models. Mohri et al. [37] investigated a beam
finite element model for thin-walled beams with arbitrary cross
sections in the context of large torsion without any assumption
on the torsion angle amplitude. In the previous numerical models,
the nonlinear equilibrium equations are solved by the help of the
incremental iterative methods. The equilibrium paths are found
by a series of prediction correction procedure according to a known
parameter control and a fixed residue. The arc-length methods are
more efficient and for this, they are commonly adopted in solution
procedure. In the presence of bifurcations and singular points the
solution is not unique and depends on the presence of imperfec-
tions and their amplitudes. These methods are fastidious and are
time consuming in presence of highly coupled equations and
systems with large degrees of freedom.

In this paper, the finite element large torsion model for thin-
walled beams investigated in Mohri et al. [37] is extended to the
case of eccentric loads. Various external loadings are applied on
the cross section contour of the beam. Effects of load eccentricities
are taken into account in bending and torsion moments without
any assumption on the torsion angle amplitude. As a consequence,
the left hand side of the equilibrium equations are highly nonlin-
ear. The tangent stiffness matrix depends not only on displace-
ments and initial stresses but also on the applied loads. In
solution strategy, we present a new continuation algorithm based
on the Asymptotic Numerical Method (ANM) in the solution of the
nonlinear system. This algorithm connects perturbation techniques
with a discretization principle and a continuation procedure with-
out the use of a correction process [38–41]. This method has been
applied successfully in many fields of solid and fluid mechanics
[42–49]. Let us remind that in previous works adopting the ANM
as solution strategy, the nonlinear terms are due essentially from
Green Lagrange tensor. In the present original work, additional
nonlinear terms result from the right hand side of the equilibrium,
since the vector force is displacement dependant.

The principle of the ANM is simply to expand the unknown of
the discretized nonlinear problem in power series with respect to
a path parameter ‘‘a’’ allowing transforming the nonlinear problem
into a succession of linear ones that admit the same tangent
matrix. The interval of validity of the path parameter, ½0; amax�, is
deduced from the computation of the truncated vector series. So,
the step lengths are computed a posteriori by an estimation of
amax. By using the evaluation of the series at a ¼ amax, we obtain a
new starting point and define, in this way, the ANM continuation
procedure. In this algorithm, only one tangent matrix triangula-
tion, at the current point, is needed to compute the terms of the
series. This algorithm is robust and often leads to a fast conver-
gence by increasing the truncation order.

In this paper we propose some ideas that enable us to adapt the
series method to strongly non-linear problems. In this case, to be
able to compute a large number of terms of the perturbation series,
we suppose that the trigonometric functions ðc ¼ cosðhxÞ � 1Þ and
ðs ¼ sinðhxÞÞ are then included as additional variables in the model
[40]. The treatment of this high nonlinearity will be facilitated in
the ANM algorithm by introducing some additional quadratic
relations in the form dc ¼ �sdhx and ds ¼ ðc þ 1Þdhx, obtained by
a simple differentiation of the functions c and s.

The paper is organized as follows: in Section 2, we present the
nonlinear model of thin-walled beams with open sections and
the derivation of the equilibrium equations of these structures.
The Section 3 is devoted to the proposed ANM continuation
algorithm. Several numerical examples on nonlinear behavior

and stability of thin-walled open sections beams are analyzed to
assess the efficiency and the reliability of the method are
illustrated in Section 4. It is proven that the proposed ANM
algorithm is more reliable and less time consuming than the clas-
sical iterative methods. Conclusions close the paper at Section 5.

2. Nonlinear structural model

2.1. Nonlinear kinematics of the thin walled beam element with open
section

Consider a 3D open section straight thin-walled beam element
of beam length L and cross section AðxÞ as illustrated in Fig. 1a.
The adopted reference system is ðGxyzÞ of center G and of rectangu-
lar axes Gx;Gy and Gz such that Gx is the initial longitudinal axis,
Gy and Gz are the first and second principal bending axes respec-
tively. The co-ordinates of shear center C located in Gyz plane are
ðyc; zcÞ, those of a point M on the section AðxÞ are ðy; z;xÞ, where
x is the sectorial co-ordinate which characterizes the warping of
the section at point M for non uniform torsion (see Fig. 1b) [5].

We assume in this model that the beam has an elastic behavior
and the local and distortional deformations are neglected. In the
framework of large displacements, large twist angles and small
deformations, the displacements uM ;vM ,wM of a point M are
expressed by the following nonlinear relations [36,37,29]:

uM ¼ u� yðv 0 þ cv 0 þ sw0Þ � zðw0 þ cw0 � sv 0Þ �xh0x
vM ¼ v � ðz� zcÞsþ ðy� ycÞc
wM ¼ wþ ðy� ycÞsþ ðz� zcÞc

ð1Þ

where u is the axial displacement of G;v and w are the displace-
ments of shear point C in y and z directions, hx is the torsion angle
and the two variables c and s which are defined by the following
trigonometric functions: c ¼ cosðhxÞ � 1 and s ¼ sinðhxÞ. The symbol
ð:0Þ in Eq. (1) denotes the derivation with respect to the co-ordinate
x. The Vlasov’s linear model [5] can be recovered from Eq. (1) by
approximating the trigonometric functions c and s by 0 and hx

respectively and using linear assumptions. Since the model is con-
cerned with large torsion, the functions c and s are conserved with-
out any approximation in both theoretical and numerical analyses.

The considered nonlinear Green strain tensors, taking into
account the large displacements, membrane effect, bending, non-
linear warping effect, has the following components:

�xx ¼ �� ykz � zky �xh00x þ
1
2

R2h0
2

x

�xy ¼ �
1
2
ðz� zc þ

@x
@y
Þh0x

�xz ¼
1
2
ðy� yc �

@x
@z
Þh0x

ð2Þ

where � is the membrane component, ky and kz are beam curvatures
about y and z axes and R is the distance between the point M and
the shear center C, expressed by:

� ¼ u0 þ 1
2
ðv 02 þw0

2 Þ � wh0x

ky ¼ w00 þ cw00 � sv 00

kz ¼ v 00 þ cv 00 þ sw00

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy� ycÞ

2 þ ðz� zcÞ2
q ð3Þ

where w ¼ ycðw0 þ cw0 � sv 0Þ � zcðv 0 þ cv 0 þ sw0Þ is the variable
associated with membrane component. In Eq. (2) the quadratic con-
tribution of the axial displacement uM in �xx; �xy and �xz has been
neglected.

A. Ed-dinari et al. / Engineering Structures 81 (2014) 240–255 241



Download English Version:

https://daneshyari.com/en/article/6740746

Download Persian Version:

https://daneshyari.com/article/6740746

Daneshyari.com

https://daneshyari.com/en/article/6740746
https://daneshyari.com/article/6740746
https://daneshyari.com

