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a b s t r a c t

For purpose of enhancing the seismic performance of civil structures, external passive energy dissipation
systems have been extensively used. Usually, the energy dissipation system is provided once the struc-
ture has been designed. Obviously, a sequential procedure cannot lead to the best overall design. In this
paper, a simultaneous integrated design of the structure and passive control system is formulated as a
two-objective optimization problem. As in almost all optimization problems with conflicting objective
functions, in this study, different optimal solutions (efficient designs) that meet required restrictions
are obtained. Since, the stochastic structural response is obtained in the frequency domain from the
power spectral density function of the excitation, the proposed approach is very efficient, robust and
requires considerably less computational effort than time history analysis. The methodology is demon-
strated through a numerical example on a shear-type framed building.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

For purpose of enhancing the seismic performance of civil struc-
tures, external passive energy dissipation systems have been exten-
sively used [1,2]. Traditionally, the process of designing a structure
and its passive vibration control system has been sequential and
obviously it cannot lead to the best overall design. In general, an
energy dissipation system is optimally designed to improve the
seismic performance after the structure has been initially designed
under constraints on weigh, strength and displacements [3,4]. How-
ever, because of the coupling between the structure and control sys-
tem, a simultaneous integrated design of both leads to a better
performance (optimal solution) than a sequential design [5–7].
Reyer [6] formally classified the various optimization strategies into
sequential, iterative, bi-level (nested), and simultaneous. A compar-
ison between those strategies was also conducted by the author.
Early works regarding sequential design were conducted by Khot
et al. [8], and Venkayya and Tischler [9]. To improve the optimality
level of sequential strategies, Grigiriadis et al. [10] and Smith et al.
[11] proposed iterative strategies which consist of first, improving
the structure design without compromising the control perfor-
mance then, optimizing the controller without compromising the
structural performance and so on until the tolerance is reached.

Bi-level strategies are based on two nested optimization loops.
The outer loop optimizes a scalar objective function which is a linear
combination of two objective functions, one related to the structure
and the other one to the controller, by varying only the structural
design. In the inner loop an optimal controller for each structure
selected by the outer loop is generated [12,13]. Finally, simulta-
neous optimization involves finding the optimal system design by
solving the same scalar objective function of the previous case,
but changing the design parameters of both structure and controller
[14–17]. This strategy usually involves a complex non-convex
mathematical problem. Fathy et al. [18] showed rigorously that sys-
tem-level optimally is guaranteed with the nested and simulta-
neous strategies, but not with the sequential o iterative strategies.
In the aerospace industry, integrated optimal design of structural-
control systems has had a great development in the last 30 years
as is evident from previous references; however, in civil engineering
applications, there is still a widespread resort to traditional
(sequential) design [19–21]. Most woks in the literature address
the integrated design of the structure combined with an active con-
trol system and only a few with a passive control system. A simulta-
neous integrated design of the structure-control system from a
composite objective function introduced as a linear combination
of structural and active control objective functions was presented
by Salama et al. [22]. A formal optimization procedure has been
developed by Chattopadhyay and Seeley [23] which addresses the
optimal locations of piezoelectric actuators and structural parame-
ters. An algorithm used to minimize multiple and conflicting
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objective functions associated with the coupled design of both,
structure and active control system is introduced by Cheng [24].
On two structural design examples, Pareto optimal solutions were
obtained. Rao et al. [25] presented a procedure similar to that Cheng
[24], but applied on two truss structures. Khot [26] proposed a
method to simultaneously design structure-control system to sup-
press structural vibrations due to external disturbances using a
multi-objective optimization approach based on global criteria. A
two-stage procedure for a controlled structural system design was
presented by Cimellaro et al. [27]. The methodology is based on a
redesign of the structure for better controllability by modifying
the linear structural system (mass, stiffness and damping) and
reducing the active control power. Similar approach, but applied
to inelastic structures is described in Cimellaro et al. [28].

Few researchers treated the problem that simultaneously eval-
uates stiffness and added passive damping of linear structural sys-
tems subjected to seismic o random excitations. Takewaki [29]
introduce a design problem to minimize the sum of relative story
displacements to stationary random excitation subjected to a con-
straint on the sum of the stiffness and damping coefficients. Park
et al. [30] described an approach for an integrated optimal design
of a viscoelastically damped structural system. Optimization prob-
lem is formulated adopting as design variables, the amount and
locations of the viscoelastic dampers. To solve the optimization
problem, a genetic algorithm is used as a numerical searching tech-
nique. On the other hand, Cimellaro [31] proposed a procedure
based on a generalized objective function defined by a linear com-
bination of the norm of displacement, acceleration and base shear
transfer functions evaluated at the updated fundamental natural
frequency constrained by the total stiffness and damping.

For providing assistance to the structural engineer (decision-
maker), in the present work, a simultaneous integrated design of
the structure and passive control system formulated as a two-objec-
tive optimization problem is proposed. The outstanding point of the
procedure described in the study is to have chosen the total story
stiffness and the total story damping as conflicting-objective func-
tions. In general, by reducing stiffness, the absolute acceleration
and consequently the base shear decrease, but at the expense of an
increase in the displacements; on the other hand, by increasing
the energy dissipation, the relative displacements are reduced with
little or no increase in the absolute acceleration [31,32]. Thus, the
procedure gives a broad overview of different Pareto-optimal solu-
tions (designs) that meet a required structural performance, and
enables to select the best compromise solution as a trade-off
between stiffness and added damping. Knowing that the main con-
tribution to the total uncertainty is due to the excitation and with
the aim of achieving robust results, the most appropriate approach
to model the excitation is through a stationary stochastic process
characterized by a power spectral density function compatible with
the response spectrum defined by the seismic code provisions. Since
the maximum structural response is estimated in the frequency
domain through stochastic vibration theory, this approach is more
efficiently and requires considerably less computational effort than
time history analysis. From the results on a symmetrical building
modelled as a linear shear-type planar frame it is found that through
the proposed procedure, different efficient designs can be reached
maintaining the required level of structural performance.

2. Formulation of the integrated design problem

As mentioned before, the integrated design problem of the
structure and the passive control system is formulated as a two-
objective optimization problem expressed as follows:

Find z that minimizes the following objective function vector:

f ðzÞ ¼ ff 1ðzÞ; f 2ðzÞg ð1Þ

subjected to

giðzÞ 6 0; i ¼ 1;2; . . . ;p

uiðzÞ ¼ 0; i ¼ 1;2; . . . ; q

in which z is the design variable vector, f 1ðzÞ; f 2ðzÞ are the objective
functions and gi(z), uiðzÞ are the constraint functions.

The main characteristic of the two-objective optimization prob-
lem is that none of the feasible solutions allow simultaneously min-
imizing both objective functions. To overcome this problem a
Pareto-optimal solution is useful and defined as [33]: if vector zp

is a solution of Eq. (1), there exists no feasible vector z that would
decrease same objective function without causing a simultaneous
increase in, at least, other objective function. Usually several Par-
eto-optimal solutions exist for a vector optimization problem and
to select the best solution, the designer judgment alongside addi-
tional information are needed. There are several methods for solv-
ing a vector optimization problem. The most commonly used
approach, known as the weighting method, substitutes the vector
optimization problem Eq. (1) into a scalar one formulated as a
weighted sum of the individual objective functions as:

FðzÞ ¼ w1f 1ðzÞ þw2f 2ðzÞ ð2Þ

in which w1 and w2 are weighting factors.
A set of Pareto-optimal solutions denoted as fzpg can be gener-

ated by varying the weight of each objective function. In order to
select the best solution, the designer should previously define the
weight of each objective function from additional information
(cost, feasibility, etc.), or resort to a decision-making process
[34,35]. In this study, besides displaying the set of Pareto-optimal
solutions, the following decision-making process is adopted. In a
cooperative optimization procedure, the best solution should guar-
antee that each objective function reaches the lowest possible
value, even if it is not its own minimum value. For this, an optimal
solution zk

*(k = 1, 2) minimizing individually to each objective
function is obtained subjected to the constraints stated in Eq. (1).
Then, a matrix P can be constructed as:

P ¼
f 1ðz�1Þ f 2ðz�1Þ
f 1ðz�2Þ f 2ðz�2Þ

� �
ð3Þ

in which, the lowest values of each objective functions,
f k;min ¼ f kðz�kÞ, are in the diagonal elements of matrix P and the high-
est ones outside of it, f k;max ¼ max½f kðz�j Þ�; k–j k; j ¼ 1;2. During
cooperative optimization, the k-th objective function should never
have a value lower than fk,min (if the problem is well-defined), nor
should it exceed fk,min (it runs counter to the objective of minimizing
fk). Based on these assertions, the following objective function can
be constructed:

R ¼
Y2

k¼1

½ f k;max � f kðzpÞ�
½ f k;max � f k;min�

ð4Þ

in which, the range of R is 0 < R < 1 and zp denotes a Pareto-optimal
solution minimizes to Eq. (2).

Therefore the solution ẑ selected from Pareto-optimal set, {zp},
which maximizes R, is the best solution (rational compromise
solution).

2.1. Objective functions and constraints

In any structural design, the aim is to guarantee a required level
of structural performance at the lowest possible total cost. Assum-
ing that non-structural live and dead floor masses are defined by
operational requirements, the total cost is associated with the
structural stiffness and the size of energy dissipation system. With-
out limiting the applicability of the methodology to any type of
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